Electrically charged black hole on AdS3: scale invariance and the Smarr formula

The Einstein-Maxwell theory with negative cosmological constant in three spacetime dimensions is considered. It is shown that the Smarr relation for the electrically charged BTZ black hole emerges from two different approaches based on the scaling symmetry of the asymptotic behaviour of the fields at infinity. In the first approach, we prove that the conservation law associated to the scale invariance of the action for a class of stationary and circularly symmetric configurations, allows to obtain the Smarr formula as long as a special set of holographic boundary conditions is satisfied. This particular set is singled out making the integrability conditions for the energy compatible with the scale invariance of the reduced action. In the second approach, it is explicitly shown that the Smarr formula is recovered through the Euler theorem for homogeneous functions, provided the same set of holographic boundary conditions is fulfilled.