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Kasner spacetimes

Kasner spacetimes

MKas = (0,∞)× T3, hKas = −dt⊗ dt+

3∑
i=1

t2qi dxi ⊗ dxi

3∑
i=1

qi =

3∑
i=1

q2i = 1

Without loss of generality, q1 ≤ 0 ≤ q2 ≤ 2
3 ≤ q3 ≤ 1.

Big Bang

For q1 < 0,

K[hKas] = Riem[hKas]αβγδRiem[hKas]
αβγδ ≃ t−4
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The BKL ansatz

BKL ansatz

For M = (0,∞)×N with a closed orientable 3-manifold N , and a
covector frame {ωI} on N ,

h = −dt⊗ dt+

3∑
I=1

t2qI(x)ωI(x)⊗ ωI(x) + . . .

3∑
I=1

qI(x) =

3∑
I=1

qI(x)
2 = 1

This ansatz is consistent with the Einstein equations if, for q1(x) < 0, it
satisfies the integrability condition

(ω1 ∧ dω1)x = 0 ⇔ ∃u, v : N → R : ω1 = u dv

⇔ Vp = {Y ∈ TpN | (ω1)p(Y ) = 0} is integrable
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Stable Big Bang formation for Kasner spacetimes

Polarized U(1)-symmetric spacetimes

The spacetime admits a non-degenerate, hypersurface-orthogonal spacelike
Killing field X .

Assume M can be foliated by constant time surfaces diffeomorphic to
Σ× S1, and consider (appropriately transported) spatial coordinates
{xi}i=1,2,3 with X = ∂x3 . Considering the first and second fundamental
form ǧ and ǩ with respect to this foliation, this is equivalent to ǧ, ǩ being
independent of x3 and ǧ13 = ǧ23 = ǩ13 = ǩ23 ≡ 0.

Fournodavlos-Rodnianski-Speck ‘23

Kasner spacetimes with exponents (q1, q2, q3) ̸= (0, 0, 1) exhibit stable Big
Bang formation within the class of polarized U(1)-symmetric solutions to
the Einstein vacuum equations.
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Generalised Kasner spacetimes

Einstein scalar-field matter

TSF
µν = ∇µϕ∇νϕ+

1

2
ḡµν ∇

α
ϕ∇αϕ

Ric[h]µν = 8π TSF
µν , □gϕ = 0

Generalized Kasner spacetimes

MKas = (0,∞)× T3, hKas = −dt⊗ dt+

d∑
i=1

t2qi dxi ⊗ dxi

ϕ(t, x) = A log(t),

3∑
i=1

qi =

3∑
i=1

q2i + 8π A2 = 1

For A ̸= 0, there are solutions with only positive exponents (e.g., FLRW
solutions).
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Connecting both stability mechanisms

Any polarized U(1)-symmetric spacetime metric on M = M × S1 can be
written as

h = e−2
√
4πϕḡ + e2

√
4πϕ(dx3)2

for a spacetime (M ∼= I × Σ, ḡ) and ϕ : M → R.

Moncrief ‘86

(M,h) is a polarized U(1)-symmetric solution to the Einstein vacuum
equations if and only if (M, ḡ, ϕ) solves the Einstein scalar-field equations.
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The reference solutions

Let (Σ, γ) be a closed (orientable) surface and A < 0.

The 2 + 1 scalar field (FLRW) reference

M = (0, t0]× Σ, ḡFLRW = −dt2 + a(t)2γ, ϕFLRW = A log(t)

a satisfies the Friedman equation

ȧ2 = 4π A2 a−2 − κ

The 3 + 1 vacuum solutions

M = (0, t0]× Σ× S1, h = −dT 2 + b(T )2 γ + b3(T )
2 (dx3)2

Here, b(T ) ≃ T
2
3 , b3(T ) ≃ T− 1

3 as T → 0, with proportionality for
Σ ∼= T2.
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Results

Past stability of FLRW solutions 2 + 1 Einstein scalar-field system

Consider initial data on Σt0 to the 2 + 1 Einstein scalar-field system close
to FLRW data. Then, its past maximal globally hyperbolic development
within the Einstein scalar-field equations admits a time function t such
that the foliation (Σs = t−1(s))s∈(0,t0] is constant curvature. The
Kretschmann scalar exhibits blow up of order t−4 as t → 0.

Result proven for Einstein scalar-field Vlasov system

Riem[g] is pure trace ⇒ Evolution along CMC surfaces heavily
simplifies



Results

Past stability of FLRW solutions 2 + 1 Einstein scalar-field system

Consider initial data on Σt0 to the 2 + 1 Einstein scalar-field system close
to FLRW data. Then, its past maximal globally hyperbolic development
within the Einstein scalar-field equations admits a time function t such
that the foliation (Σs = t−1(s))s∈(0,t0] is constant curvature. The
Kretschmann scalar exhibits blow up of order t−4 as t → 0.

Result proven for Einstein scalar-field Vlasov system

Riem[g] is pure trace ⇒ Evolution along CMC surfaces heavily
simplifies



Results

Quiescent Big Bang for (some) polarized U(1)-symmetric spacetimes

Consider polarized U(1)-symmetric initial data on Σ× S1 that is close to
data for

h = e−2
√
4π ϕFLRW ḡFLRW + e2

√
4πϕFLRW (dx3)2

for the 2+ 1 FLRW solution (M, ḡFLRW , ϕFLRW = A log(t)) with A < 0.
Then, its past maximal globally hyperbolic development within the Einstein
vacuum equations is polarized U(1)-symmetric and past C2-inextendible.

The Kretschmann scalar e−4
√
4π ϕK[h] exhibits stable blow-up.

Similar convergence properties for renormalized spacetime quantities

In Kasner time T : K[h] ≃ T−4±c ε, ...

Foliation is not CMC.
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Thanks for listening!


