Quiescent Big Bang formation in polarized U(1)-symmetry

Liam Urban

January 23, 2025

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

Kasner spacetimes

Kasner spacetimes

$$M_{\mathsf{Kas}} = (0, \infty) \times \mathbb{T}^3, \quad h_{\mathsf{Kas}} = -dt \otimes dt + \sum_{i=1}^3 t^{2q_i} dx^i \otimes dx^i$$
$$\sum_{i=1}^3 q_i = \sum_{i=1}^3 q_i^2 = 1$$
Without loss of generality, $q_1 \le 0 \le q_2 \le \frac{2}{3} \le q_3 \le 1$.

Kasner spacetimes

Kasner spacetimes

$$M_{\text{Kas}} = (0, \infty) \times \mathbb{T}^3, \quad h_{\text{Kas}} = -dt \otimes dt + \sum_{i=1}^3 t^{2q_i} dx^i \otimes dx^i$$
$$\sum_{i=1}^3 q_i = \sum_{i=1}^3 q_i^2 = 1$$

Without loss of generality, $q_1 \leq 0 \leq q_2 \leq \frac{2}{3} \leq q_3 \leq 1$.

Big Bang

For $q_1 < 0$,

$$\mathcal{K}[h_{\mathsf{Kas}}] = \mathsf{Riem}[h_{\mathsf{Kas}}]_{\alpha\beta\gamma\delta}\mathsf{Riem}[h_{\mathsf{Kas}}]^{\alpha\beta\gamma\delta} \simeq t^{-4}$$

BKL ansatz

For $\overline{M}=(0,\infty)\times N$ with a closed orientable 3-manifold N, and a covector frame $\{\omega_I\}$ on N,

$$h = -dt \otimes dt + \sum_{I=1}^{3} t^{2q_I(x)} \omega_I(x) \otimes \omega_I(x) + \dots$$
$$\sum_{I=1}^{3} q_I(x) = \sum_{I=1}^{3} q_I(x)^2 = 1$$

BKL ansatz

For $\overline{M}=(0,\infty)\times N$ with a closed orientable 3-manifold N, and a covector frame $\{\omega_I\}$ on N,

$$h = -dt \otimes dt + \sum_{I=1}^{3} t^{2q_I(x)} \omega_I(x) \otimes \omega_I(x) + \dots$$
$$\sum_{I=1}^{3} q_I(x) = \sum_{I=1}^{3} q_I(x)^2 = 1$$

This ansatz is consistent with the Einstein equations if, for $q_1(x) < 0$, it satisfies the integrability condition

$$(\omega_1 \wedge d\omega_1)_x = 0 \quad \Leftrightarrow \exists u, v : N \to \mathbb{R} : \omega_1 = u \, dv$$

BKL ansatz

For $\overline{M}=(0,\infty)\times N$ with a closed orientable 3-manifold N, and a covector frame $\{\omega_I\}$ on N,

$$h = -dt \otimes dt + \sum_{I=1}^{3} t^{2q_I(x)} \omega_I(x) \otimes \omega_I(x) + \dots$$
$$\sum_{I=1}^{3} q_I(x) = \sum_{I=1}^{3} q_I(x)^2 = 1$$

This ansatz is consistent with the Einstein equations if, for $q_1(x) < 0$, it satisfies the integrability condition

$$(\omega_1 \wedge d\omega_1)_x = 0 \quad \Leftrightarrow \exists u, v : N \to \mathbb{R} : \omega_1 = u \, dv$$

 $\Leftrightarrow \quad V_p = \{Y \in T_pN \ | \ (\omega_1)_p(Y) = 0\} \text{ is integrable}$

Stable Big Bang formation for Kasner spacetimes

Polarized U(1)-symmetric spacetimes

The spacetime admits a non-degenerate, hypersurface-orthogonal spacelike Killing field \mathcal{X} .

Stable Big Bang formation for Kasner spacetimes

Polarized U(1)-symmetric spacetimes

The spacetime admits a non-degenerate, hypersurface-orthogonal spacelike Killing field \mathcal{X} .

Assume M can be foliated by constant time surfaces diffeomorphic to $\Sigma \times \mathbb{S}^1$, and consider (appropriately transported) spatial coordinates $\{x^i\}_{i=1,2,3}$ with $\mathcal{X} = \partial_{x^3}$. Considering the first and second fundamental form \check{g} and \check{k} with respect to this foliation, this is equivalent to \check{g}, \check{k} being independent of x^3 and $\check{g}_{13} = \check{g}_{23} = \check{k}_{13} = \check{k}_{23} \equiv 0$.

Polarized U(1)-symmetric spacetimes

The spacetime admits a non-degenerate, hypersurface-orthogonal spacelike Killing field \mathcal{X} .

Assume M can be foliated by constant time surfaces diffeomorphic to $\Sigma \times \mathbb{S}^1$, and consider (appropriately transported) spatial coordinates $\{x^i\}_{i=1,2,3}$ with $\mathcal{X} = \partial_{x^3}$. Considering the first and second fundamental form \check{g} and \check{k} with respect to this foliation, this is equivalent to \check{g}, \check{k} being independent of x^3 and $\check{g}_{13} = \check{g}_{23} = \check{k}_{13} = \check{k}_{23} \equiv 0$.

Fournodavlos-Rodnianski-Speck '23

Kasner spacetimes with exponents $(q_1, q_2, q_3) \neq (0, 0, 1)$ exhibit stable Big Bang formation within the class of polarized U(1)-symmetric solutions to the Einstein vacuum equations.

Generalised Kasner spacetimes

Einstein scalar-field matter

$$T^{SF}_{\mu\nu} = \overline{\nabla}_{\mu}\phi\,\overline{\nabla}_{\nu}\phi + \frac{1}{2}\,\bar{g}_{\mu\nu}\,\overline{\nabla}^{\alpha}\phi\overline{\nabla}_{\alpha}\phi$$
$$\operatorname{Ric}[h]_{\mu\nu} = 8\,\pi\,T^{SF}_{\mu\nu}, \quad \Box_{g}\phi = 0$$

Generalized Kasner spacetimes

$$\overline{M}_{\mathsf{Kas}} = (0, \infty) \times \mathbb{T}^3, \quad h_{\mathsf{Kas}} = -dt \otimes dt + \sum_{i=1}^d t^{2q_i} \, dx^i \otimes dx^i$$
$$\phi(t, x) = A \, \log(t), \quad \sum_{i=1}^3 q_i = \sum_{i=1}^3 q_i^2 + 8 \pi \, A^2 = 1$$

For $A \neq 0$, there are solutions with only positive exponents (e.g., FLRW solutions).

BKL ansatz

For
$$\overline{M} = I \times M^{(3)}$$
 and a covector frame $\{\omega_I\}$ on M ,

$$h = -dt \otimes dt + \sum_{I=1}^{3} t^{2q_I(x)} \omega_I(x) \otimes \omega_I(x) + \dots$$

$$\phi(x) = A(x) \log(t) + \dots$$

$$\sum_{I=1}^{3} q_I(x) = \sum_{I=1}^{3} q_I(x)^2 + 8 \pi A(x)^2 = 1$$

BKL ansatz

For
$$\overline{M} = I \times M^{(3)}$$
 and a covector frame $\{\omega_I\}$ on M ,
 $h = -dt \otimes dt + \sum_{I=1}^{3} t^{2q_I(x)} \omega_I(x) \otimes \omega_I(x) + \dots$
 $\phi(x) = A(x) \log(t) + \dots$
 $\sum_{I=1}^{3} q_I(x) = \sum_{I=1}^{3} q_I(x)^2 + 8 \pi A(x)^2 = 1$

Fournodavlos-Rodnianski-Speck '23

Generalised Kasner spacetimes $(\overline{M} = (0, \infty) \times \mathbb{T}^3, h_{\text{Kas}}, \phi_{\text{Kas}})$ with positive Kasner exponents exhibit stable Big Bang formation within the Einstein scalar-field system.

Any polarized $U(1)\text{-symmetric spacetime metric on }M=\overline{M}\times\mathbb{S}^1$ can be written as

$$h = e^{-2\sqrt{4\pi}\phi}\bar{g} + e^{2\sqrt{4\pi}\phi}(dx^3)^2$$

for a spacetime $(\overline{M} \cong I \times \Sigma, \overline{g})$ and $\phi : \overline{M} \to \mathbb{R}$.

Any polarized $U(1)\text{-symmetric spacetime metric on }M=\overline{M}\times\mathbb{S}^1$ can be written as

$$h = e^{-2\sqrt{4\pi}\phi}\bar{g} + e^{2\sqrt{4\pi}\phi}(dx^3)^2$$

for a spacetime $(\overline{M} \cong I \times \Sigma, \overline{g})$ and $\phi : \overline{M} \to \mathbb{R}$.

Moncrief '86

(M,h) is a polarized U(1)-symmetric solution to the Einstein vacuum equations if and only if $(\overline{M},\overline{g},\phi)$ solves the Einstein scalar-field equations.

The reference solutions

Let (Σ, γ) be a closed (orientable) surface and A < 0.

The 2 + 1 scalar field (FLRW) reference

 $\overline{M} = (0, t_0] \times \Sigma, \ \overline{g}_{FLRW} = -dt^2 + a(t)^2 \gamma, \ \phi_{FLRW} = A \log(t)$

 \boldsymbol{a} satisfies the Friedman equation

$$\dot{a}^2 = 4 \pi A^2 a^{-2} - \kappa$$

The reference solutions

Let (Σ, γ) be a closed (orientable) surface and A < 0.

The 2 + 1 scalar field (FLRW) reference

 $\overline{M} = (0, t_0] \times \Sigma, \ \overline{g}_{FLRW} = -dt^2 + a(t)^2 \gamma, \ \phi_{FLRW} = A \log(t)$

 \boldsymbol{a} satisfies the Friedman equation

$$\dot{a}^2 = 4 \pi A^2 a^{-2} - \kappa$$

The 3 + 1 vacuum solutions

$$M = (0, t_0] \times \Sigma \times \mathbb{S}^1, \ h = -dT^2 + b(T)^2 \gamma + b_3(T)^2 (dx^3)^2$$

Here, $b(T) \simeq T^{\frac{2}{3}}, \ b_3(T) \simeq T^{-\frac{1}{3}}$ as $T \to 0$, with proportionality for $\Sigma \cong \mathbb{T}^2$.

Past stability of FLRW solutions 2 + 1 Einstein scalar-field system

Consider initial data on Σ_{t_0} to the 2+1 Einstein scalar-field system close to FLRW data. Then, its past maximal globally hyperbolic development within the Einstein scalar-field equations admits a time function t such that the foliation $(\Sigma_s = t^{-1}(s))_{s \in (0,t_0]}$ is constant curvature. The Kretschmann scalar exhibits blow up of order t^{-4} as $t \to 0$.

Past stability of FLRW solutions 2 + 1 Einstein scalar-field system

Consider initial data on Σ_{t_0} to the 2+1 Einstein scalar-field system close to FLRW data. Then, its past maximal globally hyperbolic development within the Einstein scalar-field equations admits a time function t such that the foliation $(\Sigma_s = t^{-1}(s))_{s \in (0,t_0]}$ is constant curvature. The Kretschmann scalar exhibits blow up of order t^{-4} as $t \to 0$.

- Result proven for Einstein scalar-field Vlasov system
- Riem[g] is pure trace \Rightarrow Evolution along CMC surfaces heavily simplifies

Quiescent Big Bang for (some) polarized U(1)-symmetric spacetimes

Consider polarized U(1)-symmetric initial data on $\Sigma\times\mathbb{S}^1$ that is close to data for

$$h = e^{-2\sqrt{4\pi}\phi_{FLRW}} \bar{g}_{FLRW} + e^{2\sqrt{4\pi}\phi_{FLRW}} (dx^3)^2$$

for the 2+1 FLRW solution $(\overline{M}, \bar{g}_{FLRW}, \phi_{FLRW} = A \log(t))$ with A < 0. Then, its past maximal globally hyperbolic development within the Einstein vacuum equations is polarized U(1)-symmetric and past C^2 -inextendible. The Kretschmann scalar $e^{-4\sqrt{4\pi}\,\phi}\mathcal{K}[h]$ exhibits stable blow-up.

Quiescent Big Bang for (some) polarized U(1)-symmetric spacetimes

Consider polarized U(1)-symmetric initial data on $\Sigma\times\mathbb{S}^1$ that is close to data for

$$h = e^{-2\sqrt{4\pi}\phi_{FLRW}} \bar{g}_{FLRW} + e^{2\sqrt{4\pi}\phi_{FLRW}} (dx^3)^2$$

for the 2+1 FLRW solution $(\overline{M}, \bar{g}_{FLRW}, \phi_{FLRW} = A \log(t))$ with A < 0. Then, its past maximal globally hyperbolic development within the Einstein vacuum equations is polarized U(1)-symmetric and past C^2 -inextendible. The Kretschmann scalar $e^{-4\sqrt{4\pi}\,\phi}\mathcal{K}[h]$ exhibits stable blow-up.

Similar convergence properties for renormalized spacetime quantities

- In Kasner time $T: \mathcal{K}[h] \simeq T^{-4 \pm c \, \varepsilon}$, ...
- Foliation is **not** CMC.

Thanks for listening!