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3 + 1-description of spacetime

Let (M, γ) be a vacuum spacetime with time-function t :M→ (a, b) ⊆ R.
Then, Σ := {Σt}t∈(a,b) is a foliation ofM by spacelike hypersurfaces.

Each leaf Σ of Σ, with induced metric Σg and second fundamental form ΣK
is a vacuum initial data set for the Einstein Equation, i.e.

Φ(g,K) :=

(
R+ (trgK)2 − |K|2g
2divg(K − trgK · g)

)
=

(
0
0

)
(1)

Φ is called constraint operator.

We define coordinates (t, xi) on V := (t0 − ε, t0 + ε)× U ⊆M for some
ε > 0 by flowing coordinates (xi) defined on an open set U ⊆ Σt0 along any
timelike vector field ξ ∈ Γ(TM) with dt(ξ) = 1.
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3 + 1-description of spacetime

The vector field ∂t = ξ splits uniquely as ∂t =: Nν +X, with
N : U → R+ smooth lapse (function), and
X ∈ Γ(TV ) smooth, spacelike shift (vector field) Xp ∥ Σt(p) ∀p ∈ V .

Then, on (t0 − ε, t0 + ε)× U , the spacetime metric γ can be written as

γ = −N̂2dt2 + Σgij (dx
i +Xidt)(dxj +Xjdt) (2)

and the evolution of induced metric and 2nd fundamental form along the
foliation is described by the Einstein Evolution Equations{

Lν
Σg = 2ΣK

Lν
ΣK−

Σ∇2
N

N
= 2(ΣK)2 − ΣRic− (trΣK)ΣK

(3)
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Energy and linear momentum on
asymptotically hyperboloidal Initial data



Asymptotically Hyperboloidal Initial Data Sets

Definition
A vacuum initial data set (Σ, g,K) is asymptotically hyperboloidal if there
exist K ⊂ Σ,K0 ⊂ H3 compact, and a diffeomorphism at infinity

Ψ : H3 \ K0 → Σ \ K,

such that the (0, 2)-symmetric tensors on H3 \K0

ġ := Ψ∗g − b and p := Ψ∗K −Ψ∗g

have the following asymptotic behavior as r →∞

ġrr = mrr
r5

+O(r−6), ġαr = O(r−3), ġαβ = g
(0)
αβ +

gmαβ

r
+O(r−2),

prr = O(r−5), pαr = O(r−3), pαβ = p
(0)
αβ +

kmαβ

r
+O2(r

−2).

Refer [Chen, Wang and Yau 2014].
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Geometric invariants

Given (Σ, g,K), (Σ0, g0,K0) vacuum initial data
Ψ : Σ0 \ K0 → Σ \ K
Φ : Γ(M× S2Σ)→ Γ(R⊕ T ∗Σ) constraint operator

Then, given a test function V and small e := Ψ∗(g,K)− (g0,K0)

⟨V,Φ(Ψ∗(g,K))− Φ0⟩0 = ⟨V, DΦ0(e)⟩0 + ⟨V, Q(e)⟩0︸ ︷︷ ︸
=:Q(V,e)

= div0U(V, e) + ⟨DΦ∗
0(V), e⟩0 +Q(V, e).

Definition
Let Ψ be given and let V ∈ ker(D∗Φ0). We say that there exists a well-defined
total charge on (Σ, g,K) associated to V w.r.t. Ψ if ⟨V,Φ(Ψ∗(g,K)) − Φ0⟩0
and Q(V, e) are integrable w.r.t the volume density induced by g0.
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Geometric invariants

Theorem and definition [Michel 2011]
Assume that there exists a well-defined total charge on (Σ, g,K) associated
to V ∈ ker(D∗Φ0) w.r.t. Ψ. Then,

m((g,K),Ψ,V) := limk→∞

∫
Sk

U(V, e)(n) dS. (4)

(Bk)k∈N is a non-decreasing exhaustion of Σ0 such that each Bk has smooth
compact boundary Sk, n and dS are the outer normal and surface measure of
Sk w.r.t. g0. The total charge is invariant under changes of diffeomorphisms
at infinity that are asymptotic to the identity.
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Energy and Linear Momentum in AH IDS

The energy of an AH IDS is given by:

E =
1

32π

∫
S2

(
3trσ

gmαβ + 2trσ
kmαβ + 2mrr

)︸ ︷︷ ︸
mass aspect

dAS2

and the linear momentum of an AH IDS is given by:

P i =
1

32π

∫
S2

(
3trσ

gmαβ + 2trσ
kmαβ + 2mrr

)
xidAS2 ,

where xi are the first spherical harmonics on the unit sphere.

Refer [Chen, Wang and Yau 2014],
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previous results

Hamiltonian analysis in fixed asymptotically Minkowskian coordinates
in space-time. [Trautman 1958]

Space-time Bondi coordinates [Bondi, van der Burg and Metzner-Sachs,
1962]

Space-time "charge integrals", derived in a geometric Hamiltonian
framework [Chruściel 1985], [Chruściel Jezierski and Kijowski 2001, Chruściel
and Herzlich 2003,]

Initial data charge integrals [Chruściel, Jezierski and Leski 2004]

Optimal Isometric Embeddings - Liu Yau mass [Chen, Wang and Yau 2014]

Stronger asymptotics - Wang’s asymptotics e.g. [Sakovich 2021] and
others
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Evolution of charges



Choice of Evolution

We define the hyperboloidal temporal functions in Minkowski (R3,1, η):

τ := t+ h(r).

and require that for some C > 0

|h′(r)| = 1− C

r2
+O2(r

−3).

Then, the τ = const hypersurfaces are hyperboloids of the same radius.
[Zenginoğlu 2008], [Valiente Kroon, Gomes Da Silva 2024], ...

We study the evolution in direction ∂τ = 1
N
(ν −X), with

N = r +O2(r
−1), X = −r2∂r +O1(r

0).

This produces a hyperboloidal foliation in Minkowski and preserves the
asymptotics of AH initial data.
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Evolution of E and P i in AH IDS

Define H := {(N,X) ∈ C∞(Σ)× Γ(TΣ)| hyperboloidal foliation }

Theorem
Let (M, g,K) be an asymptotically hyperboloidal initial data set.
Assume (Mτ , gτ ,Kτ ) is the AH foliation of the globally hyperbolic
development of (M, g,K) defined by (N,X) ∈ H.

Then, the loss of energy and linear momentum along this foliation is

d

dτ
E = − 1

4π

∫
S2
|(0)gαβ + (0)pαβ |2dAS2 , (5)

and
d

dτ
P i = − 1

4π

∫
S2
|(0)gαβ + (0)pαβ |2xidAS2 . (6)
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[Zenginoğlu 2008]

Figure: Hyperboloidal foliation Figure: Milne foliation



Comparison to the Null Setting

Consider a spacetime (M, γ). In Bondi-Sachs coordinates, I+ = I × S2 is
the idealized null hypersurface r =∞ described by coordinates (u, x). The
metric γ is written as follows:

γ = −UV du2 − 2Ududr + r2hαβ (dxα +Wαdu)
(
dxβ +W βdu

)
.

If the asymptotic expansion of hαβ is

hαβ = σαβ +
Cαβ(u, x)

r
+O(r−2),

the Bondi Energy Loss formula is given as:

∂

∂u
E(u) = −

∫
S2

NαβN
αβdAS2 ,

where Nαβ := ∂uCαβ .
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Outlook

We recover non-conservation of energy and linear momentum of AH
IDS using the Einstein evolution equations
This is obtained for a class of observers H
This can also be done in the presence of matter
Next step: Evolution of charges associated to other KIDs (work in
progress)
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Thank you!
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