Stability and Instability of Relativistic Fluids in Slowly Expanding Spacetimes

Maximilian Ofner

joint with David Fajman, Maciej Maliborski, Todd Oliynyk and Zoe Wyatt

Radboud University

February 2025

Der Wissenschaftsfonds.

イロト イヨト イヨト

Equations

Einstein-Euler-system:

$$\begin{aligned} \operatorname{Ric}[g]_{\mu\nu} &- \frac{1}{2} \operatorname{R}[g] g_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}, \qquad \text{(Einstein)} \\ \nabla_{\alpha} T^{\alpha\mu} &= 0, \qquad \text{(rel. Euler)} \\ \rho u_{\mu} u_{\nu} &+ p(g_{\mu\nu} + u_{\mu} u_{\nu}) = T_{\mu\nu}. \end{aligned}$$

The relativistic Euler equations are equivalent to

$$u^{\mu}\nabla_{\mu}\rho + (\rho + p)\nabla_{\mu}u^{\mu} = 0,$$

$$(\rho + p)u^{\mu}\nabla_{\mu}u^{j} + (g^{\mu j} + u^{\mu}u^{j})\nabla_{\mu}p = 0.$$

<ロ> (日) (日) (日) (日) (日)

Equations

Einstein-Euler-system:

$$\begin{aligned} \operatorname{Ric}[g]_{\mu\nu} &- \frac{1}{2} \operatorname{R}[g] g_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}, \qquad \text{(Einstein)} \\ \nabla_{\alpha} T^{\alpha\mu} &= 0, \qquad \text{(rel. Euler)} \\ \rho u_{\mu} u_{\nu} &+ p(g_{\mu\nu} + u_{\mu} u_{\nu}) = T_{\mu\nu}. \end{aligned}$$

The relativistic Euler equations are equivalent to

$$u^{\mu}
abla_{\mu}
ho+(
ho+p)
abla_{\mu}u^{\mu}=0,$$

 $(
ho+p)u^{\mu}
abla_{\mu}u^{j}+(g^{\mu j}+u^{\mu}u^{j})
abla_{\mu}p=0.$

Can consider either the **coupled Einstein-Euler system** or the **rel. Euler equations on a fixed geometry**.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Equations

Einstein-Euler-system:

$$\begin{aligned} \operatorname{Ric}[g]_{\mu\nu} &- \frac{1}{2} \operatorname{R}[g] g_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}, \qquad \text{(Einstein)} \\ \nabla_{\alpha} T^{\alpha\mu} &= 0, \qquad \text{(rel. Euler)} \\ \rho u_{\mu} u_{\nu} &+ p(g_{\mu\nu} + u_{\mu} u_{\nu}) = T_{\mu\nu}. \end{aligned}$$

The relativistic Euler equations are equivalent to

$$u^{\mu}
abla_{\mu}
ho + (
ho + p)
abla_{\mu}u^{\mu} = 0,$$

 $(
ho + p)u^{\mu}
abla_{\mu}u^{j} + (g^{\mu j} + u^{\mu}u^{j})
abla_{\mu}p = 0.$

Can consider either the **coupled Einstein-Euler system** or the **rel. Euler equations on a fixed geometry**. We close the system with a **linear (barotropic)** equation of state

$$p = K\rho, \quad K \in [0, 1/3].$$

Equations

Einstein-Euler-system:

$$\begin{aligned} \operatorname{Ric}[g]_{\mu\nu} &- \frac{1}{2} \operatorname{R}[g] g_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}, \qquad \text{(Einstein)} \\ \nabla_{\alpha} T^{\alpha\mu} &= 0, \qquad \text{(rel. Euler)} \\ \rho u_{\mu} u_{\nu} &+ p(g_{\mu\nu} + u_{\mu} u_{\nu}) = T_{\mu\nu}. \end{aligned}$$

The relativistic Euler equations are equivalent to

$$u^{\mu}
abla_{\mu}
ho + (
ho + p)
abla_{\mu}u^{\mu} = 0,$$

 $(
ho + p)u^{\mu}
abla_{\mu}u^{j} + (g^{\mu j} + u^{\mu}u^{j})
abla_{\mu}p = 0.$

Can consider either the **coupled Einstein-Euler system** or the **rel. Euler equations on a fixed geometry**. We close the system with a **linear (barotropic)** equation of state

$$\blacktriangleright K = 0: \text{ Dust} \qquad p = K\rho, \quad K \in [0, 1/3]$$

Equations

Einstein-Euler-system:

$$\begin{aligned} \operatorname{Ric}[g]_{\mu\nu} &- \frac{1}{2} \operatorname{R}[g] g_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}, \qquad \text{(Einstein)} \\ \nabla_{\alpha} T^{\alpha\mu} &= 0, \qquad \text{(rel. Euler)} \\ \rho u_{\mu} u_{\nu} &+ p(g_{\mu\nu} + u_{\mu} u_{\nu}) = T_{\mu\nu}. \end{aligned}$$

The relativistic Euler equations are equivalent to

$$u^{\mu}
abla_{\mu}
ho+(
ho+p)
abla_{\mu}u^{\mu}=0, \ (
ho+p)u^{\mu}
abla_{\mu}u^{j}+(g^{\mu j}+u^{\mu}u^{j})
abla_{\mu}p=0.$$

Can consider either the **coupled Einstein-Euler system** or the **rel. Euler equations on a fixed geometry**. We close the system with a **linear (barotropic)** equation of state

•
$$K = 0$$
: Dust $p = K\rho$, $K \in [0, 1/3]$

▶ $K = \frac{1}{3}$: Radiation fluid

イロト イヨト イヨト

Equations

Einstein-Euler-system:

$$\begin{aligned} \operatorname{Ric}[g]_{\mu\nu} &- \frac{1}{2} \operatorname{R}[g] g_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}, \qquad \text{(Einstein)} \\ \nabla_{\alpha} T^{\alpha\mu} &= 0, \qquad \text{(rel. Euler)} \\ \rho u_{\mu} u_{\nu} &+ p(g_{\mu\nu} + u_{\mu} u_{\nu}) = T_{\mu\nu}. \end{aligned}$$

The relativistic Euler equations are equivalent to

$$u^{\mu}
abla_{\mu}
ho + (
ho + p)
abla_{\mu}u^{\mu} = 0,$$

 $(
ho + p)u^{\mu}
abla_{\mu}u^{j} + (g^{\mu j} + u^{\mu}u^{j})
abla_{\mu}p = 0.$

Can consider either the **coupled Einstein-Euler system** or the **rel. Euler equations on a fixed geometry**. We close the system with a **linear (barotropic)** equation of state

•
$$K = 0$$
: Dust $p = K\rho$, $K \in [0, 1/3]$.

- ▶ $K = \frac{1}{3}$: Radiation fluid
- ▶ $0 < K < \frac{1}{3}$: Massive fluids

Some solutions

FLRW spacetimes:

$$g=-dt^2+a(t)^2g_M,$$

where M is $\mathbb{H}^3, \mathbb{S}^3, \mathbb{R}^3$ of constant curvature κ . a(t) is referred to as the scale factor. We will refer to a(t) = t as linear expansion. Some solutions:

ヘロト ヘロト ヘビト ヘビト

Some solutions

FLRW spacetimes:

$$g=-dt^2+a(t)^2g_M,$$

where M is \mathbb{H}^3 , \mathbb{S}^3 , \mathbb{R}^3 of constant curvature κ . a(t) is referred to as the scale factor. We will refer to a(t) = t as linear expansion. Some solutions:

1. Einstein de Sitter (decelerating):

$$egin{aligned} \kappa &= 0, \quad \Lambda = 0, \quad
ho > 0, \quad K = 0, \ g &= -dt^2 + t^{rac{4}{3}}\delta. \end{aligned}$$

Some solutions

FLRW spacetimes:

$$g=-dt^2+a(t)^2g_M,$$

where M is \mathbb{H}^3 , \mathbb{S}^3 , \mathbb{R}^3 of constant curvature κ . a(t) is referred to as the scale factor. We will refer to a(t) = t as linear expansion. Some solutions:

1. Einstein de Sitter (decelerating):

$$\kappa=0, \quad \Lambda=0, \quad
ho>0, \quad K=0,$$

 $g=-dt^2+t^{rac{4}{3}}\delta.$

2. de Sitter (accelerated):

$$\begin{split} \kappa &= 0, \quad \Lambda > 0, \quad \rho = 0, \\ g &= -dt^2 + e^{2\sqrt{\Lambda/3}t} \delta. \end{split}$$

Some solutions

FLRW spacetimes:

$$g=-dt^2+a(t)^2g_M,$$

where M is $\mathbb{H}^3, \mathbb{S}^3, \mathbb{R}^3$ of constant curvature κ . a(t) is referred to as the scale factor. We will refer to a(t) = t as linear expansion. Some solutions:

1. Einstein de Sitter (decelerating):

$$\kappa=0, \quad \Lambda=0, \quad
ho>0, \quad K=0,$$

 $g=-dt^2+t^{rac{4}{3}}\delta.$

2. de Sitter (accelerated):

$$\begin{split} \kappa &= 0, \quad \Lambda > 0, \quad \rho = 0, \\ g &= -dt^2 + e^{2\sqrt{\Lambda/3}t} \delta. \end{split}$$

3. Milne universe (non-accelerated)

$$\kappa=-1, \quad \Lambda=0, \quad
ho=0,$$
 $g=-dt^2+t^2g_{\mathbb{H}^3}.$

Stability and Instability of Relativistic Fluids in Slowly Expanding

Stability heuristics

What about global well posedness and stability of these solutions close to the **quiet fluid state**?

イロト イヨト イヨト

Stability heuristics

What about global well posedness and stability of these solutions close to the **quiet fluid state**?

Phenomenologically: Expansion stabilizes the fluid.

Stability heuristics

What about global well posedness and stability of these solutions close to the **quiet fluid state**?

Phenomenologically: Expansion stabilizes the fluid. **Question**: What expansion rate is sufficient (and for what fluid)?

Recent developments

- ▶ [Christodoulou, 2007]
 - \rightarrow Relativistic Euler on Minkowski space
 - \rightarrow Singularities form in finite time
- ▶ [Brauer, Rendall, and Reula, 1994]
 - $\rightarrow~$ Newtonian setting
 - \rightarrow Fluid stabilization
- [Rodnianski and Speck, 2013]
 - \rightarrow Euler-Einstein-system
 - \rightarrow Exponential expansion rate
- ▶ [Speck, 2013]
 - \rightarrow Relativistic Euler
 - → Various stability results for accelerated expansion (a(t) > t)and a sharp instability result for radiation at a(t) = t.
- Many more works by Hadžić, Oliynyk, Friedrich, Valiente-Kroon, ...

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

From now on: Power law inflation

$$g = -dt^2 + t^{2\alpha}\gamma.$$

[Speck, 2013], [Fajman, Oliynyk, and Wyatt, 2021], [Fajman, O, Oliynyk, and Wyatt, 2024]:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
<li

From now on: Power law inflation

$$g = -dt^2 + t^{2\alpha}\gamma.$$

[Speck, 2013], [Fajman, Oliynyk, and Wyatt, 2021], [Fajman, O, Oliynyk, and Wyatt, 2024]:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
<li

From now on: Power law inflation

$$g = -dt^2 + t^{2\alpha}\gamma.$$

[Speck, 2013], [Fajman, Oliynyk, and Wyatt, 2021], [Fajman, O, Oliynyk, and Wyatt, 2024]:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
<li

From now on: Power law inflation

$$g = -dt^2 + t^{2\alpha}\gamma.$$

[Speck, 2013], [Fajman, Oliynyk, and Wyatt, 2021], [Fajman, O, Oliynyk, and Wyatt, 2024]:

What happens in decelerated regimes?

周下 《臣下《臣》

From now on: Power law inflation

$$g = -dt^2 + t^{2\alpha}\gamma.$$

[Speck, 2013], [Fajman, Oliynyk, and Wyatt, 2021], [Fajman, O, Oliynyk, and Wyatt, 2024]:

What happens in **decelerated regimes**? Does stability depend non-trivially on *K*?

へ ・ ・ ・ ・ ・ ・ ・ き ト ・ き ・ き ・ き ・ う 、 つ へ で Stability and Instability of Relativistic Fluids in Slowly Expanding

Decelerated regime: Analytical analysis

Background:

$$(\mathbb{R} \times \mathbb{T}^3, -dt^2 + t^{2\alpha} \delta_{ij} dx^i dx^j).$$

Equations of motion in 1 + 1-symmetry

$$\partial_t v = -\frac{\alpha(1-3K)}{t} v - t^{-\alpha} \frac{1-K}{1-Kv^2} v \partial_x v - t^{-\alpha} \frac{K}{1+K} \frac{(1-v^2)^2}{1-Kv^2} \partial_x L + \alpha(1-K)(1-3K) \frac{t^{-\alpha}}{1-Kv^2} v^3,$$

$$\partial_t L = -\frac{1+K}{1-Kv^2}t^{-\alpha}\partial_x v - \frac{1-K}{1-Kv^2}t^{-\alpha}v\partial_x L + \alpha(1+K)(1-3K)\frac{t^{-\alpha}}{1-Kv^2}v^2.$$

Decelerated regime: Analytical analysis

Background:

$$(\mathbb{R} \times \mathbb{T}^3, -dt^2 + t^{2\alpha} \delta_{ij} dx^i dx^j).$$

Equations of motion in 1 + 1-symmetry

$$\partial_t v = -\frac{\alpha(1-3K)}{t} v - t^{-\alpha} \frac{1-K}{1-Kv^2} v \partial_x v - t^{-\alpha} \frac{K}{1+K} \frac{(1-v^2)^2}{1-Kv^2} \partial_x L + \alpha(1-K)(1-3K) \frac{t^{-\alpha}}{1-Kv^2} v^3,$$

$$\partial_t L = -\frac{1+K}{1-Kv^2}t^{-\alpha}\partial_x v - \frac{1-K}{1-Kv^2}t^{-\alpha}v\partial_x L + \alpha(1+K)(1-3K)\frac{t^{-\alpha}}{1-Kv^2}v^2.$$

Corrected energy:

$$E_1[v, L] \simeq \|\partial v\|_{L^2}^2 + \|\partial L\|_{L^2}^2 + Ct^{-1+\alpha} \int v \partial L.$$

Decelerated regime: Analytical analysis

Background:

$$(\mathbb{R} \times \mathbb{T}^3, -dt^2 + t^{2\alpha} \delta_{ij} dx^i dx^j).$$

Equations of motion in 1 + 1-symmetry

$$\partial_t v = -\frac{\alpha(1-3K)}{t} v - t^{-\alpha} \frac{1-K}{1-Kv^2} v \partial_x v - t^{-\alpha} \frac{K}{1+K} \frac{(1-v^2)^2}{1-Kv^2} \partial_x L + \alpha(1-K)(1-3K) \frac{t^{-\alpha}}{1-Kv^2} v^3,$$

$$\partial_t L = -\frac{1+K}{1-Kv^2}t^{-\alpha}\partial_x v - \frac{1-K}{1-Kv^2}t^{-\alpha}v\partial_x L + \alpha(1+K)(1-3K)\frac{t^{-\alpha}}{1-Kv^2}v^2.$$

Corrected energy:

$$E_1[\mathbf{v}, \mathbf{L}] \simeq \|\partial \mathbf{v}\|_{L^2}^2 + \|\partial \mathbf{L}\|_{L^2}^2 + Ct^{-1+\alpha} \int \mathbf{v} \partial \mathbf{L}.$$

Decelerated regime: Analytical analysis

Background:

$$(\mathbb{R} \times \mathbb{T}^3, -dt^2 + t^{2\alpha} \delta_{ij} dx^i dx^j).$$

Equations of motion in 1 + 1-symmetry

$$\partial_t v = -\frac{\alpha(1-3K)}{t} v - t^{-\alpha} \frac{1-K}{1-Kv^2} v \partial_x v - t^{-\alpha} \frac{K}{1+K} \frac{(1-v^2)^2}{1-Kv^2} \partial_x L + \alpha(1-K)(1-3K) \frac{t^{-\alpha}}{1-Kv^2} v^3,$$

$$\partial_t L = -\frac{1+K}{1-Kv^2} t^{-\alpha} \partial_x v - \frac{1-K}{1-Kv^2} t^{-\alpha} v \partial_x L + \alpha (1+K) (1-3K) \frac{t^{-\alpha}}{1-Kv^2} v^2.$$

Corrected energy:

$$E_1[v,L] \simeq \|\partial v\|_{L^2}^2 + \|\partial L\|_{L^2}^2 + Ct^{-1+\alpha} \int v \partial L.$$

Decelerated regime: Analytical analysis

Background:

$$(\mathbb{R} \times \mathbb{T}^3, -dt^2 + t^{2\alpha} \delta_{ij} dx^i dx^j).$$

Equations of motion in 1 + 1-symmetry

$$\partial_t v = -\frac{\alpha(1-3K)}{t} v - t^{-\alpha} \frac{1-K}{1-Kv^2} v \partial_x v - t^{-\alpha} \frac{K}{1+K} \frac{(1-v^2)^2}{1-Kv^2} \partial_x L + \alpha(1-K)(1-3K) \frac{t^{-\alpha}}{1-Kv^2} v^3,$$

$$\partial_t L = -\frac{1+K}{1-Kv^2} t^{-\alpha} \partial_x v - \frac{1-K}{1-Kv^2} t^{-\alpha} v \partial_x L + \alpha (1+K) (1-3K) \frac{t^{-\alpha}}{1-Kv^2} v^2.$$

Corrected energy:

$$E_1[v,L] \simeq \|\partial v\|_{L^2}^2 + \|\partial L\|_{L^2}^2 + Ct^{-1+\alpha} \int v \partial L.$$

Condition for closing the estimate: $K < 1 - \frac{2}{3\alpha}$.

Stability and Instability of Relativistic Fluids in Slowly Expanding

Decelerated Regime: Numerical analysis

Left: $(\alpha, K) = (0.7, 1/6)$, Right: $(\alpha, K) = (0.9, 1/6)$:

Maximilian Ofner Stability and Instability of Relativistic Fluids in Slowly Expanding

< ロ > < 回 > < 回 > < 回 > < 回 >

Decelerated Regime: Numerical analysis

Left: $(\alpha, K) = (0.7, 1/6)$, Right: $(\alpha, K) = (0.9, 1/6)$:

Left: K = 1/6:

Stability and Instability of Relativistic Fluids in Slowly Expanding

Maximilian Ofner

Comparison Analysis/Numerics

<ロ> (日) (日) (日) (日) (日)

Results for the boundary cases

In addition to the bulk region $0 < K < \frac{1}{3}$, we have analytical results for dust and radiation:

Results for the boundary cases

In addition to the bulk region $0 < K < \frac{1}{3}$, we have analytical results for dust and radiation:

◆□ → ◆問 → ◆臣 → ◆臣 →

Conclusion

Maximilian Ofner Stability and Instability of Relativistic Fluids in Slowly Expanding

æ

Conclusion

► The type of fluid matters in slow expansion

<ロ> (日) (日) (日) (日) (日)

- ▶ The type of fluid matters in slow expansion
- A formal limit $K \rightarrow 0$ is problematic

イロト イヨト イヨト

- ▶ The type of fluid matters in slow expansion
- A formal limit $K \rightarrow 0$ is problematic
- Current work: 3 + 1 dimensions

- ▶ The type of fluid matters in slow expansion
- A formal limit $K \rightarrow 0$ is problematic
- Current work: 3 + 1 dimensions
- ► Instability using characteristics

イロト イヨト イヨト

- ▶ The type of fluid matters in slow expansion
- A formal limit $K \rightarrow 0$ is problematic
- Current work: 3 + 1 dimensions
- ► Instability using characteristics
- ▶ Radiation instability agrees with previous results

Thank you for your attention!

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

э

Uwe Brauer, Alan Rendall, and Oscar Reula. The cosmic no-hair theorem and the non-linear stability of homogeneous Newtonian cosmological models. *Classical Quantum Gravity*, 11(9): 2283–2296, 1994. ISSN 0264-9381. URL http://stacks.iop.org/0264-9381/11/2283.

Demetrios Christodoulou. *The Formation of Shocks in* 3-*Dimensional Fluids*. EMS, Switzerland, 2007.

David Fajman, Todd A. Oliynyk, and Zoe Wyatt. Stabilizing Relativistic Fluids on Spacetimes with Non-Accelerated Expansion. *Comm. Math. Phys.*, 383(1):401–426, 2021. ISSN 0010-3616. doi: 10.1007/s00220-020-03924-9. URL https://doi.org/10.1007/s00220-020-03924-9.

David Fajman, Maximilian O, Todd A. Oliynyk, and Zoe Wyatt. The stability of relativistic fluids in linearly expanding cosmologies. Int. Math. Res. Not. IMRN, (5):4328–4383, 2024. ISSN 1073-7928,1687-0247. doi: 10.1093/imrn/rnad241. URL https://doi.org/10.1093/imrn/rnad241.

Igor Rodnianski and Jared Speck. The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant. *J. Eur. Math. Soc. (JEMS)*, 15(6):2369–2462, 2013. ISSN 1435-9855. doi: 10.4171/JEMS/424. URL

https://doi.org/10.4171/JEMS/424.

Jared Speck. The stabilizing effect of spacetime expansion on relativistic fluids with sharp results for the radiation equation of state. *Arch. Ration. Mech. Anal.*, 210(2):535–579, 2013. ISSN 0003-9527. doi: 10.1007/s00205-013-0655-3. URL https://doi.org/10.1007/s00205-013-0655-3.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >