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Equations

Einstein-Euler-system:

Riclglw — % Riglgu +Aguw = Ty, (Einstein)
Vo T =0, (rel. Euler)
puyty + p(guy + upty) = Ty
The relativistic Euler equations are equivalent to
u'Noup+(p+ p)Vuu' =0,
(p+ p)u'V i + (g% + u'/)V,p = 0.
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The relativistic Euler equations are equivalent to
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Can consider either the coupled Einstein-Euler system or the
rel. Euler equations on a fixed geometry.
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puyty + p(guy + upty) = Ty
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u'Noup+(p+ p)Vuu' =0,
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Can consider either the coupled Einstein-Euler system or the
rel. Euler equations on a fixed geometry. We close the system with
a linear (barotropic) equation of state

p=Kp, Kel0,1/3].
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Equations

Einstein-Euler-system:

Riclglw — % Riglgu +Aguw = Ty, (Einstein)
Vo T =0, (rel. Euler)
puyty + p(guy + upty) = Ty
The relativistic Euler equations are equivalent to
u'Noup+(p+ p)Vuu' =0,
(p+ p)u'V i + (g% + u'/)V,p = 0.

Can consider either the coupled Einstein-Euler system or the
rel. Euler equations on a fixed geometry. We close the system with
a linear (barotropic) equation of state

» K =0: Dust p=Kp, Ke[0,1/3]

» K= %: Radiation fluid
> 0< K < }: Massive fluids
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Some solutions

FLRW spacetimes:
g = —di® + a(t)’gw,
where M is H3,S3 R? of constant curvature . a(t) is referred to as the
scale factor. We will refer to a(t) =t as linear expansion.
Some solutions:
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FLRW spacetimes:

g = —di® + a(t)’gw,
where M is H3,S3 R? of constant curvature . a(t) is referred to as the
scale factor. We will refer to a(t) =t as linear expansion.
Some solutions:

1. Einstein de Sitter (decelerating):
k=0, A=0, p>0, K=0,
g = —dt’ + t36.
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g = —di® + a(t)’gw,
where M is H3,S3 R? of constant curvature . a(t) is referred to as the
scale factor. We will refer to a(t) =t as linear expansion.
Some solutions:

1. Einstein de Sitter (decelerating):
k=0, A=0, p>0, K=0,
g = —dt’ + t36.
2. de Sitter (accelerated):
k=0, AN>0, p=0,
g = —dt? + V35,
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Some solutions
FLRW spacetimes:

g = —di® + a(t)’gw,
where M is H3,S3 R? of constant curvature . a(t) is referred to as the
scale factor. We will refer to a(t) =t as linear expansion.
Some solutions:

1. Einstein de Sitter (decelerating):
k=0, A=0, p>0, K=0,
g = —dt’ + t36.
2. de Sitter (accelerated):
k=0, AN>0, p=0,
g = —dt? + V35,
3. Milne universe (non-accelerated)
k=-1, A=0, p=0,
g = —dt® + t2gyp.
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-
Stability heuristics

What about global well posedness and stability of these solutions
close to the quiet fluid state?
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What about global well posedness and stability of these solutions
close to the quiet fluid state?

Minkowski space exponential expansion other rates

Phenomenologically: Expansion stabilizes the fluid.
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Stability heuristics

What about global well posedness and stability of these solutions
close to the quiet fluid state?

Minkowski space

Phenomenologically: Expansion stabilizes the fluid.

exponential expansion

other rates

Question: What expansion rate is sufficient (and for what fluid)?
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Recent developments

» [Christodoulou, 2007]

— Relativistic Euler on Minkowski space
— Singularities form in finite time

» [Brauer, Rendall, and Reula, 1994]

— Newtonian setting
— Fluid stabilization

» [Rodnianski and Speck, 2013]

— Euler-Einstein-system
— Exponential expansion rate

» [Speck, 2013]
— Relativistic Euler
— Various stability results for accelerated expansion (a(t) > t)
and a sharp instability result for radiation at a(t) = t.
» Many more works by HadZi¢, Oliynyk, Friedrich,
Valiente-Kroon, ...
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Stability in slow expansion

From now on: Power law inflation
g = —dt? + t2,

[Speck, 2013],[Fajman, Oliynyk, and Wyatt, 2021],[Fajman, O, Oliynyk,
and Wyatt, 2024]:
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N
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What happens in decelerated regimes?
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Stability in slow expansion

From now on: Power law inflation
g = —dt? + t2,

[Speck, 2013],[Fajman, Oliynyk, and Wyatt, 2021],[Fajman, O, Oliynyk,
and Wyatt, 2024]:
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What happens in decelerated regimes?
Does stability depend non-trivially on K7
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Decelerated regime: Analytical analysis

Background: o
(R x T3, —dt? + t2*§;dx’ dx’).

Equations of motion in 1 + 1-symmetry

ol -3K) o 1-K
Orv = _f‘/_ t - szvaxv
. K (1—v?)? T 5
0, L 1-K)(1-3K)—— v°,
T+ K 1=k xb el =K =3K) T v
1+K _, 1-K _,
8tL— —1 — Kv2t aXV— mt Vaxl_
Fa(l+ K)(1—3K)— 2
« 1_szv.
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Decelerated regime: Analytical analysis

Background: o
(R x T3, —dt? + t2*§;dx’ dx’).

Equations of motion in 1 + 1-symmetry

 a(1-3K) 1-K
8tv——7v—t 1_Kv2v8Xv
. K (1—v?)? T 5
o 2 LTV gl +a(l—K)(1-3K)——— 3,
T3 K 1= Koz b T el =K =3K)— 7 v
1+K _, 1-K _,
8tL— —1 — Kv2t aXV— mt Vaxl_
Fa(l+ K)(1—3K)— 2
@ 1—ke2""

Corrected energy:

Evv, L] ~ [|ov|Ps + [OL]2 + Ct—l+a/vaL.
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Decelerated regime: Analytical analysis

Background: o
(R x T3, —dt? + t2*§;dx’ dx’).

Equations of motion in 1 + 1-symmetry

 a(1-3K) 1-K
8tv——7v—t 1_Kv2v8Xv
. K (1—v?)? T 5
o 2 LTV g +a(l—K)(1-3K)——— 3,
T3 K 1= Koz b T el =K =3K)— 7 v
1+K _, 1-K _,
81—L— —1 — Kv2t aXV - mt Vaxl_
Fa(l+ K)(1—3K)— 2
@ 1—ke2""

Corrected energy:
Evv, L] ~ [|ov|Ps + [OL]2 + Ct—l+a/vaL.

Condition for closing the estimate: K < 1 — 3%
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Decelerated Regime: Numerical analysis

Left: (e, K)=(0.7,1/6), Right: (e, K)=(0.9,1/6):

[l (v, L)/ Nl @, Lo
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Decelerated Regime: Numerical analysis

Left: (e, K)=(0.7,1/6), Right: (e, K)=(0.9,1/6):

ll(w, L)lls/ Nl @, L)llo

logt logt

log t,
log A
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Comparison Analysis/Numerics
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Results for the boundary cases

In addition to the bulk region 0 < K < % we have analytical
results for dust and radiation:

13- 4
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Conclusion

» The type of fluid matters in slow expansion
» A formal limit K — 0 is problematic

» Current work: 3 + 1 dimensions

» Instability using characteristics

» Radiation instability agrees with previous results
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Thank you for your attention!
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