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Equations
Einstein-Euler-system:

Ric[g ]µν − 1

2
R[g ]gµν + Λgµν = Tµν , (Einstein)

∇αT
αµ = 0, (rel. Euler)

ρuµuν + p(gµν + uµuν) = Tµν .

The relativistic Euler equations are equivalent to

uµ∇µρ+ (ρ+ p)∇µu
µ = 0,

(ρ+ p)uµ∇µu
j + (gµj + uµuj)∇µp = 0.

Can consider either the coupled Einstein-Euler system or the
rel. Euler equations on a fixed geometry. We close the system with
a linear (barotropic) equation of state

p = Kρ, K ∈ [0, 1/3].
▶ K = 0: Dust

▶ K = 1
3 : Radiation fluid

▶ 0 < K < 1
3 : Massive fluids
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Some solutions
FLRW spacetimes:

g = −dt2 + a(t)2gM ,

where M is H3,S3,R3 of constant curvature κ. a(t) is referred to as the
scale factor. We will refer to a(t) = t as linear expansion.
Some solutions:

1. Einstein de Sitter (decelerating):

κ = 0, Λ = 0, ρ > 0, K = 0,

g = −dt2 + t
4
3 δ.

2. de Sitter (accelerated):

κ = 0, Λ > 0, ρ = 0,

g = −dt2 + e2
√

Λ/3tδ.

3. Milne universe (non-accelerated)

κ = −1, Λ = 0, ρ = 0,

g = −dt2 + t2gH3 .
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Stability heuristics

What about global well posedness and stability of these solutions
close to the quiet fluid state?

Minkowski space other ratesexponential expansion

?

Phenomenologically: Expansion stabilizes the fluid.
Question: What expansion rate is sufficient (and for what fluid)?
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Recent developments

▶ [Christodoulou, 2007]

→ Relativistic Euler on Minkowski space
→ Singularities form in finite time

▶ [Brauer, Rendall, and Reula, 1994]

→ Newtonian setting
→ Fluid stabilization

▶ [Rodnianski and Speck, 2013]

→ Euler-Einstein-system
→ Exponential expansion rate

▶ [Speck, 2013]

→ Relativistic Euler
→ Various stability results for accelerated expansion (a(t) > t)

and a sharp instability result for radiation at a(t) = t.

▶ Many more works by Hadžić, Oliynyk, Friedrich,
Valiente-Kroon, . . .
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Stability in slow expansion
From now on: Power law inflation

g = −dt2 + t2αγ.

[Speck, 2013],[Fajman, Oliynyk, and Wyatt, 2021],[Fajman, O, Oliynyk,
and Wyatt, 2024]:

???

α

K

11
2

0

1
3

What happens in decelerated regimes?
Does stability depend non-trivially on K?
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Decelerated regime: Analytical analysis
Background:

(R× T3,−dt2 + t2αδijdx
idx j).

Equations of motion in 1 + 1-symmetry

∂tv = −α(1− 3K )

t
v − t−α 1− K

1− Kv2
v∂xv

− t−α K

1 + K

(1− v2)2

1− Kv2
∂xL+ α(1− K )(1− 3K )

t−α

1− Kv2
v3,

∂tL = − 1 + K

1− Kv2
t−α∂xv − 1− K

1− Kv2
t−αv∂xL

+ α(1 + K )(1− 3K )
t−α

1− Kv2
v2.

Corrected energy:

E1[v , L] ≃ ∥∂v∥2L2 + ∥∂L∥2L2 + Ct−1+α

∫
v∂L.

Condition for closing the estimate: K < 1− 2
3α .

Maximilian Ofner Stability and Instability of Relativistic Fluids in Slowly Expanding Spacetimes



References

Decelerated regime: Analytical analysis
Background:

(R× T3,−dt2 + t2αδijdx
idx j).

Equations of motion in 1 + 1-symmetry

∂tv = −α(1− 3K )

t
v − t−α 1− K

1− Kv2
v∂xv

− t−α K

1 + K

(1− v2)2

1− Kv2
∂xL+ α(1− K )(1− 3K )

t−α

1− Kv2
v3,

∂tL = − 1 + K

1− Kv2
t−α∂xv − 1− K

1− Kv2
t−αv∂xL

+ α(1 + K )(1− 3K )
t−α

1− Kv2
v2.

Corrected energy:

E1[v , L] ≃ ∥∂v∥2L2 + ∥∂L∥2L2 + Ct−1+α

∫
v∂L.

Condition for closing the estimate: K < 1− 2
3α .

Maximilian Ofner Stability and Instability of Relativistic Fluids in Slowly Expanding Spacetimes



References

Decelerated regime: Analytical analysis
Background:

(R× T3,−dt2 + t2αδijdx
idx j).

Equations of motion in 1 + 1-symmetry

∂tv = −α(1− 3K )

t
v − t−α 1− K

1− Kv2
v∂xv

− t−α K

1 + K

(1− v2)2

1− Kv2
∂xL+ α(1− K )(1− 3K )

t−α

1− Kv2
v3,

∂tL = − 1 + K

1− Kv2
t−α∂xv − 1− K

1− Kv2
t−αv∂xL

+ α(1 + K )(1− 3K )
t−α

1− Kv2
v2.

Corrected energy:

E1[v , L] ≃ ∥∂v∥2L2 + ∥∂L∥2L2 + Ct−1+α

∫
v∂L.

Condition for closing the estimate: K < 1− 2
3α .

Maximilian Ofner Stability and Instability of Relativistic Fluids in Slowly Expanding Spacetimes



References

Decelerated regime: Analytical analysis
Background:

(R× T3,−dt2 + t2αδijdx
idx j).

Equations of motion in 1 + 1-symmetry

∂tv = −α(1− 3K )

t
v − t−α 1− K

1− Kv2
v∂xv

− t−α K

1 + K

(1− v2)2

1− Kv2
∂xL+ α(1− K )(1− 3K )

t−α

1− Kv2
v3,

∂tL = − 1 + K

1− Kv2
t−α∂xv − 1− K

1− Kv2
t−αv∂xL

+ α(1 + K )(1− 3K )
t−α

1− Kv2
v2.

Corrected energy:

E1[v , L] ≃ ∥∂v∥2L2 + ∥∂L∥2L2 + Ct−1+α

∫
v∂L.

Condition for closing the estimate: K < 1− 2
3α .

Maximilian Ofner Stability and Instability of Relativistic Fluids in Slowly Expanding Spacetimes



References

Decelerated regime: Analytical analysis
Background:

(R× T3,−dt2 + t2αδijdx
idx j).

Equations of motion in 1 + 1-symmetry

∂tv = −α(1− 3K )

t
v − t−α 1− K

1− Kv2
v∂xv

− t−α K

1 + K

(1− v2)2

1− Kv2
∂xL+ α(1− K )(1− 3K )

t−α

1− Kv2
v3,

∂tL = − 1 + K

1− Kv2
t−α∂xv − 1− K

1− Kv2
t−αv∂xL

+ α(1 + K )(1− 3K )
t−α

1− Kv2
v2.

Corrected energy:

E1[v , L] ≃ ∥∂v∥2L2 + ∥∂L∥2L2 + Ct−1+α

∫
v∂L.

Condition for closing the estimate: K < 1− 2
3α .

Maximilian Ofner Stability and Instability of Relativistic Fluids in Slowly Expanding Spacetimes



References

Decelerated Regime: Numerical analysis
Left: (α,K)=(0.7,1/6), Right: (α,K)=(0.9,1/6):
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Comparison Analysis/Numerics

Maximilian Ofner Stability and Instability of Relativistic Fluids in Slowly Expanding Spacetimes



References

Results for the boundary cases

In addition to the bulk region 0 < K < 1
3 , we have analytical

results for dust and radiation:

α

K

11
2

0

1
3
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Conclusion

▶ The type of fluid matters in slow expansion

▶ A formal limit K → 0 is problematic

▶ Current work: 3 + 1 dimensions

▶ Instability using characteristics

▶ Radiation instability agrees with previous results
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Thank you for your attention!
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