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We would like a notion of distance between spacetimes that applies
when spacetimes are not diffeomorphic and their metric tensors are
not close in a smooth sense.
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Why do we need a metric theory of spacetimes?

Other questions one could try to answer:
» Is our spacetime well-approximated by cosmological models?
» Can we compare spacetimes with different topology?
» Can singular and smooth spacetimes be compared?

In the Riemannian setting, one can address questions of this type
by comparing distances within two Riemannian manifolds. E.g. we
have Gromov-Hausdorff distance and the intrinsic flat distance
of Sormani-Wenger 2011.

We would like to develop similar notions for Lorentzian manifolds.

Problem: In contrast to Riemannian manifolds spacetimes are not
natural metric spaces.
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Spacetimes and causal structure

(N,h)

» A spacetime is a (time-oriented) Lorentzian manifold
(N1 g), where g has signature (—, +,...,+).

» A vector X € T,N is causal of g(X, X) <0.
» A curve v: /| — N is causal if ¥ is always causal.
» We denote the causal future of a point p € N by J*(p).
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Time functions

Definition (Time functions)

A function 7 : N — R is called a time function if it is continuous
and increasing along future directed causal curves.

Example: A "canonical” time function is the cosmological time
function of Andersson-Galloway-Howard 1997.

7¢(q) = i / V- ))ds.
ﬁ
¥ future causal

¥(1)=q

Roughly speaking: "time elapsed since the big bang”.

Could be infinite, a regular cosmological time function takes
values in (0, 00).
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The null distance of Sormani and Vega
Let (N™1, g) be a spacetime, equipped with a time function 7.
The null distance between p and q is

P, q mfZIT —7(v(si-1))l;

where ~y is a piecewise causal curve from p to g, with breakpoints
at each sq,...,s,_1.

If 7 is locally anti-Lipschitz (Chrusciel-Grant-Minguzzi 2016), e
T = Tg is a regular cosmological time function, then d; is definite.
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Example: Null distance in Minkowski space, 7 =t

The null distance in this case is:

de((t1, %1), (t2, %)) = max(|t; — ta|, [%1 — %2]).



Can we define a distance between spacetimes?

Given a spacetime (N"*1, g) equipped with a regular cosmological
time function 75, we can convert it into a metric space
(N, dg = dz,).



Can we define a distance between spacetimes?

Given a spacetime (N"*1, g) equipped with a regular cosmological
time function 75, we can convert it into a metric space
(N, dg = dz,).

Can we just set

dS—GH((Nlr,+1>g1)? (N2n+1>g2)) = dGH((Nf—Ha dAg1)> (NS—H, dAgz))?



Can we define a distance between spacetimes?

Given a spacetime (N"*1, g) equipped with a regular cosmological
time function 75, we can convert it into a metric space
(N, dg = dz,).

Can we just set

dS—GH((Nanrlagl)? (N2n+1>g2)) = dGH((Nf—Ha dAg1)> (Ng+17 dAgz))?

This might not result in a definite distance!

We want our notion of distance to satisfy:

d((Nl,gl),(NQ,gz)) =0 <= dF : N; — N, such that F*g2 = g1,



Can we define a distance between spacetimes?

Given a spacetime (N"*1, g) equipped with a regular cosmological
time function 75, we can convert it into a metric space
(N, dg = dz,).

Can we just set
ds—ar((N7 ™, g1), (N7, g2)) = den((N]™, dgy ). (N5, dp,))?
This might not result in a definite distance!
We want our notion of distance to satisfy:
d((N1,81),(N2,g2)) =0 <= 3IF : Ny — Ny, such that F*g» = gy,

i.e. spacetimes are "the same” iff there is a Lorentzian isometry
between them.
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Example: A distance preserving map which does not
preserve causal structure
Consider the following subsets of (R?, —dt? + dx?), 7(t, x) = t.
1

1

~

In both cases, the induced null distance is

dt((tl,Xl), (tg,Xg)) = max(|t1 — t2|, |X1 — X2|).

The map F(t,x) = (x, t) is a metric isometry, but these
spacetimes are not isometric as Lorentzian manifolds.

m]

=




Encoding causality

We say that 7 and d. encode causality if for all p, g € N:

d-(p.q) = 7(q) — 7(p) <= q € JT(p).

This has been proved to hold:



Encoding causality

We say that 7 and d. encode causality if for all p, g € N:
d(p,q) = (q) = 7(p) <= q € J"(p).
This has been proved to hold:

» Sakovich-Sormani 2022 and M.-Sakovich-Sormani TBP:
locally when 7 is locally anti-Lipschitz (e.g. 7 = 7, regular).



Encoding causality

We say that 7 and d. encode causality if for all p, g € N:

d(p,q) = (q) = 7(p) <= q € J"(p).
This has been proved to hold:

» Sakovich-Sormani 2022 and M.-Sakovich-Sormani TBP:
locally when 7 is locally anti-Lipschitz (e.g. 7 = 7, regular).

» Sakovich-Sormani 2022: globally when 7 is proper.



Encoding causality

We say that 7 and d. encode causality if for all p, g € N:

d(p,q) = (q) = 7(p) <= q € J"(p).
This has been proved to hold:

» Sakovich-Sormani 2022 and M.-Sakovich-Sormani TBP:
locally when 7 is locally anti-Lipschitz (e.g. 7 = 7, regular).

» Sakovich-Sormani 2022: globally when 7 is proper.

» Burtscher-Garcia Heveling 2022: for (N, g) globally
hyperbolic and 7 having future (or past) Cauchy level sets.



Encoding causality

We say that 7 and d. encode causality if for all p, g € N:

d(p,q) = (q) = 7(p) <= q € J"(p).
This has been proved to hold:

» Sakovich-Sormani 2022 and M.-Sakovich-Sormani TBP:
locally when 7 is locally anti-Lipschitz (e.g. 7 = 7, regular).

» Sakovich-Sormani 2022: globally when 7 is proper.

» Burtscher-Garcia Heveling 2022: for (N, g) globally
hyperbolic and 7 having future (or past) Cauchy level sets.

» Galloway 2023: 7 with future causally complete level sets.
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Temple charts

n
Op(t,x, . X") = expyy) (\)?|e0 + Zx’e;) , wp(Pp(t,X)) =t

i=1

where {ep, ..., e,} are frame fields and 7 is a future timelike
geodesic with 1(0) = p and 7 = ey. We have:

g€ JH(p) = wplq) > 0.
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Uniform Temple charts

Theorem (M.-Sakovich-Sormani, TBP)

Every p € N has a neighborhood U, such that for all g € Up, the
image of the Temple chart ®4 covers U,. Consequently,

for all ,q' € Up: ¢’ € JT(q) <= d.(q,d) =7(d) — 7(q)

Moreover, there is a Riemannian metric, gr, on U, such that

for all 4,q' € Up: K 'dge(,q') < dr(q, ') < Kdge(a,q').
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An isometry theorem

Theorem (M.-Sakovich-Sormani, TBP)

Let (N{’H,gl,ﬁ) and (Nngl,gz,Tz), n > 2, be Lorentzian

manifolds equipped with Lipschitz time functions T; such that
gi(Vr,V1;) = =1 almost everywhere, i=1,2.

A bijection F : Ny — Ny such that

N A

Vp,q € Ny : d‘r1(pa q) = d7'2(F(p)7 F(q))7 Tl(p) - TQ(F(p))7

is a diffeomorphism and a Lorentzian isometry.

Recall: The causal structure determines the Lorentzian metric up
to a conformal factor (Hawking et al.).

Remark: This was proven in Sakovich-Sormani 2022 under an
extra assumption that causality is globally encoded by d;, and 7;.
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Conclusions

Our goal was to convert spacetimes into metric spaces aiming to
define a notion of distance between them.

Having established the existence of uniform Temple charts we are
able to show that

» the time function 7 and the null distance (?T locally encode
causality,

> the " converted” metric space (N, d,) can be equipped with a
bi-Lipschitz atlas,

» a time function and null distance preserving bijection must be
a smooth Lorentzian isometry.

Sakovich and Sormani 2024 discuss several possible definitions of
(definite) distances between spacetimes, based on 7 and d;.



Thank you for listening!
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