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Convergence of spacetimes

We would like a notion of distance between spacetimes that applies
when spacetimes are not diffeomorphic and their metric tensors are
not close in a smooth sense.
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Why do we need a metric theory of spacetimes?

Other questions one could try to answer:

▶ Is our spacetime well-approximated by cosmological models?

▶ Can we compare spacetimes with different topology?

▶ Can singular and smooth spacetimes be compared?

In the Riemannian setting, one can address questions of this type
by comparing distances within two Riemannian manifolds. E.g. we
have Gromov-Hausdorff distance and the intrinsic flat distance
of Sormani-Wenger 2011.

We would like to develop similar notions for Lorentzian manifolds.

Problem: In contrast to Riemannian manifolds spacetimes are not
natural metric spaces.
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Spacetimes and causal structure

(N,h)

(M,g)
V

p

q

▶ A spacetime is a (time-oriented) Lorentzian manifold
(Nn+1, g), where g has signature (−,+, . . . ,+).

▶ A vector X ∈ TpN is causal of g(X ,X ) ≤ 0.

▶ A curve γ : I → N is causal if γ̇ is always causal.

▶ We denote the causal future of a point p ∈ N by J+(p).
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Time functions

Definition (Time functions)

A function τ : N → R is called a time function if it is continuous
and increasing along future directed causal curves.

Example: A ”canonical” time function is the cosmological time
function of Andersson-Galloway-Howard 1997.

τg (q) := sup
γ:[0,1]→N

γ future causal
γ(1)=q

∫ 1

0

√
−g(γ̇(s), γ̇(s))ds.

Roughly speaking: ”time elapsed since the big bang”.

Could be infinite, a regular cosmological time function takes
values in (0,∞).
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The null distance of Sormani and Vega
Let (Nn+1, g) be a spacetime, equipped with a time function τ .

The null distance between p and q is

d̂τ (p, q) := inf
γ

k∑
i=1

|τ(γ(si ))− τ(γ(si−1))|,

where γ is a piecewise causal curve from p to q, with breakpoints
at each s1, . . . , sk−1.
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If τ is locally anti-Lipschitz (Chruściel-Grant-Minguzzi 2016), e.g.
τ = τg is a regular cosmological time function, then d̂τ is definite.
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Example: Null distance in Minkowski space, τ = t

The null distance in this case is:

d̂t((t1, x⃗1), (t2, x⃗2)) = max(|t1 − t2|, |x⃗1 − x⃗2|).
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Can we define a distance between spacetimes?

Given a spacetime (Nn+1, g) equipped with a regular cosmological
time function τg , we can convert it into a metric space
(N, d̂g = d̂τg ).

Can we just set

dS−GH((N
n+1
1 , g1), (N

n+1
2 , g2)) = dGH((N

n+1
1 , d̂g1), (N

n+1
2 , d̂g2))?

This might not result in a definite distance!

We want our notion of distance to satisfy:

d((N1, g1), (N2, g2)) = 0 ⇐⇒ ∃F : N1 → N2, such that F ∗g2 = g1,

i.e. spacetimes are ”the same” iff there is a Lorentzian isometry
between them.
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Example: A distance preserving map which does not
preserve causal structure

Consider the following subsets of (R2,−dt2 + dx2), τ(t, x) = t.
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t
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In both cases, the induced null distance is

d̂t((t1, x1), (t2, x2)) = max(|t1 − t2|, |x1 − x2|).

The map F (t, x) = (x , t) is a metric isometry, but these
spacetimes are not isometric as Lorentzian manifolds.
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Encoding causality

We say that τ and d̂τ encode causality if for all p, q ∈ N:

d̂τ (p, q) = τ(q)− τ(p) ⇐⇒ q ∈ J+(p).

This has been proved to hold:

▶ Sakovich-Sormani 2022 and M.-Sakovich-Sormani TBP:
locally when τ is locally anti-Lipschitz (e.g. τ = τg regular).

▶ Sakovich-Sormani 2022: globally when τ is proper.

▶ Burtscher-Garćıa Heveling 2022: for (N, g) globally
hyperbolic and τ having future (or past) Cauchy level sets.

▶ Galloway 2023: τ with future causally complete level sets.



Encoding causality

We say that τ and d̂τ encode causality if for all p, q ∈ N:

d̂τ (p, q) = τ(q)− τ(p) ⇐⇒ q ∈ J+(p).

This has been proved to hold:

▶ Sakovich-Sormani 2022 and M.-Sakovich-Sormani TBP:
locally when τ is locally anti-Lipschitz (e.g. τ = τg regular).

▶ Sakovich-Sormani 2022: globally when τ is proper.
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▶ Burtscher-Garćıa Heveling 2022: for (N, g) globally
hyperbolic and τ having future (or past) Cauchy level sets.

▶ Galloway 2023: τ with future causally complete level sets.



Encoding causality

We say that τ and d̂τ encode causality if for all p, q ∈ N:

d̂τ (p, q) = τ(q)− τ(p) ⇐⇒ q ∈ J+(p).

This has been proved to hold:

▶ Sakovich-Sormani 2022 and M.-Sakovich-Sormani TBP:
locally when τ is locally anti-Lipschitz (e.g. τ = τg regular).

▶ Sakovich-Sormani 2022: globally when τ is proper.
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Temple charts

p
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1, . . . , xn) = expη(t)

(
|x⃗ |e0 +

n∑
i=1

x iei

)
, ωp(Φp(t, x⃗)) := t,

where {e0, . . . , en} are frame fields and η is a future timelike
geodesic with η(0) = p and η̇ = e0. We have:

q ∈ J+(p) ⇐⇒ ωp(q) ≥ 0.
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Uniform Temple charts

Theorem (M.-Sakovich-Sormani, TBP)

Every p ∈ N has a neighborhood Up such that for all q ∈ Up, the
image of the Temple chart Φq covers Up.

Consequently,

for all q, q′ ∈ Up: q
′ ∈ J+(q) ⇐⇒ d̂τ (q, q

′) = τ(q′)− τ(q).

p
q p q'

Moreover, there is a Riemannian metric, gR , on Up such that

for all q, q′ ∈ Up: K
−1dgR (q, q

′) ≤ d̂τ (q, q
′) ≤ KdgR (q, q

′).
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An isometry theorem

Theorem (M.-Sakovich-Sormani, TBP)

Let (Nn+1
1 , g1, τ1) and (Nn+1

2 , g2, τ2), n ≥ 2, be Lorentzian
manifolds equipped with Lipschitz time functions τi such that

gi (∇τi ,∇τi ) = −1 almost everywhere, i = 1, 2.

A bijection F : N1 → N2 such that

∀p, q ∈ N1 : d̂τ1(p, q) = d̂τ2(F (p),F (q)), τ1(p) = τ2(F (p)),

is a diffeomorphism and a Lorentzian isometry.

Recall: The causal structure determines the Lorentzian metric up
to a conformal factor (Hawking et al.).

Remark: This was proven in Sakovich-Sormani 2022 under an
extra assumption that causality is globally encoded by d̂τi and τi .
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Conclusions

Our goal was to convert spacetimes into metric spaces aiming to
define a notion of distance between them.

Having established the existence of uniform Temple charts we are
able to show that

▶ the time function τ and the null distance d̂τ locally encode
causality,

▶ the ”converted” metric space (N, d̂τ ) can be equipped with a
bi-Lipschitz atlas,

▶ a time function and null distance preserving bijection must be
a smooth Lorentzian isometry.

Sakovich and Sormani 2024 discuss several possible definitions of
(definite) distances between spacetimes, based on τ and d̂τ .
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