Two spherically symmetric matter models near the weak null singularity in an Einstein-Maxwell-scalar field spacetime CERS15 Short Talk

> Raya V. Mancheva University of Edinburgh

> > January 22, 2025

< □ > < 個 > < 注 > < 注 > ... 注

SCC (C² formulation), Christodolou [1]

Maximal globally hyperbolic future developments for the Einstein Field Equations corresponding to **generic asymptotically flat** initial data are future-**inextendible** as time-oriented Lorentzian manifolds **with** C² **metrics**.

• Scalar field perturbation of RN \implies the Cauchy horizon is a WNS \implies does not violate SCC [2, 4].

(a)

The Einstein-Maxwell scalar field class of spacetimes

•
$$\mathcal{M} = \mathcal{Q} \times S^2 = (-\infty, 0)^2 \times S^2$$
, $g = -e^{2\omega} dudv + r^2(u, v) d\Omega_2^2$

• e^{ω} and r are smooth and positive in Q and extend continuously to positive functions on \mathcal{CH}^+

The Einstein-Maxwell scalar field class of spacetimes

•
$$\mathcal{M} = \mathcal{Q} \times S^2 = (-\infty, 0)^2 \times S^2$$
, $g = -e^{2\omega} dudv + r^2(u, v) d\Omega_2^2$

 e^ω and r are smooth and positive in Q and extend continuously to positive functions on CH⁺

In the region of interest $\mathcal{R} = \mathcal{Q}_{\mathcal{R}} \times S^2 \subset \mathcal{M}$:

• $r_{,v} \rightarrow -\infty$ as $v \rightarrow 0^-$ for all $u \in (-\infty, u_s)$ (CH⁺ = {v = 0} = WNS)

•
$$r_{,u} < 0$$
 and $r_{,v} < 0$ in \mathcal{R} .

• Important L^1 bounds of geometric quantities hold specifically in \mathcal{R} .

CH¹

 \mathfrak{K}^+

3 / 14

Spherical dust. Preliminaries for Theorem 1

Definition $((n_0, N_0, C_K)$ -admissible curve)

Let $\lambda : (-a, a) \to Q_R$ be a (nonconstant) smooth spacelike curve. Let $0 < n_0 < N_0, C_K > 0$. Say λ is an (n_0, N_0, C_K) -admissible curve if $\forall \alpha \in (-a, a)$

- $u[\lambda(\alpha)] > -\infty$
- $\ \, \mathbf{0} \quad n_0 < |(\lambda')^{\nu}|, |(\lambda')^{\nu}| < N_0 \ (\lambda' \equiv \textit{tangent to } \lambda)$

3 'Curvature of
$$\lambda' = \left| \frac{\langle \lambda', \nabla_{\lambda'} \nu \rangle}{\langle \lambda', \lambda' \rangle} \right| \leq C_K (\nu(\alpha) \equiv f-d \text{ unit normal to } \lambda)$$

Spherical dust. Preliminaries for Theorem 1

Definition (Geodesic variation based on λ)

Given a (n_0, N_0, C_K) -admissible curve λ define the geodesic variation based on λ to be the map $\overline{\Gamma}$, given by

$$\overline{\Gamma}(\alpha,\tau) := \exp_{\lambda(\alpha)}(\tau\nu(\alpha)) \tag{1}$$

on
$$D = \{(\alpha, \tau) \in \mathbb{R}^2 : -a < \alpha < a; \ 0 \le \tau \le T(\alpha)\}$$
 (2)

where $\alpha \mapsto T(\alpha)$ is defined by the condition $v[\overline{\Gamma}(\alpha, T(\alpha))] = 0$. Denote by D^0 be the interior of D and by $\Gamma := \overline{\Gamma}|_{D^0}$ the restriction of $\overline{\Gamma}$ to D^0 .

Theorem 1 (Regularity of Spherical Dust)

Given a (n_0, N_0, C_K) -admissible curve λ , let $\overline{\Gamma} : D \to \overline{\Gamma}(D) \subset \overline{\mathcal{Q}_R}$ be the geodesic variation based on λ . Then there exists a small enough v_{min} depending on C_K , n_0 and N_0 such that if $\lambda^v(\alpha) > v_{min}$ for all $\alpha \in (-a, a)$ then

• $\Gamma: D^0 \to Image(\Gamma) \subset Q_{\mathcal{R}}$ is a diffeomorphism.

2
$$\overline{\Gamma}$$
 : $D \rightarrow Image(\overline{\Gamma}) \subset \overline{\mathcal{Q}_{\mathcal{R}}}$ is a homeomorphism.

Theorem 1 (Regularity of Spherical Dust), continued

Consider spherically symmetric dust in \mathcal{R} with 4-velocity vector field $U(u, v) = \partial_{\tau} \Gamma \circ \Gamma^{-1}(u, v)$ at all points in $\text{Image}(\Gamma) \subset \mathcal{Q}_{\mathcal{R}}$. Let $\rho = \rho(u, v)$ to be the energy density of the dust on $\text{Image}(\Gamma) \subset \mathcal{Q}_{\mathcal{R}}$.

Assume that ρ is smooth and positive on Image(λ) and extends to a positive function on $\overline{\text{Image}(\lambda)}$, and that U and ρ satisfy the transport equation on $\Gamma(D^0)$. Then

● $\exists C > 0$, depending on $\|\rho\|_{C^0(\lambda)}$, n_0 , N_0 , v_{min} and C_g such that $\rho(u, v) \leq C$ in Image($\overline{\Gamma}$).

Spherical dust. Key steps in the proof.

Prove that the Jacobi field along an infalling radial timelike geodesic based λ stays bounded and bounded away from zero.

Spherical dust. Key steps in the proof.

- Prove that the Jacobi field along an infalling radial timelike geodesic based λ stays bounded and bounded away from zero.
- Solution Prove $\Gamma : D^0 \to \text{Image}(\Gamma) \subset \mathcal{Q}_{\mathcal{R}}$ is locally a diffeomorphism in the interior & injective. Conclude Γ is a diffeomorphism onto its image.
- Prove that α → Γ(α, T(α)) ∈ CH⁺ is injective and depends continuously on α. Conclude that Γ is a homeomorsphism onto its image _{T+}

(4回) (4回) (4回)

CH

Spherical dust. Key steps in the proof.

- Prove that the Jacobi field along an infalling radial timelike geodesic based λ stays bounded and bounded away from zero.
- Solution Prove $\Gamma : D^0 \to \text{Image}(\Gamma) \subset \mathcal{Q}_{\mathcal{R}}$ is locally a diffeomorphism in the interior & injective. Conclude Γ is a diffeomorphism onto its image.
- Prove that α → Γ(α, T(α)) ∈ CH⁺ is injective and depends continuously on α. Conclude that Γ is a homeomorsphism onto its image _{T+}

Cℋ

Integrate the tranpsort equation \rightarrow prove that ρ is bounded.

Scalar field characteristic IVP. Preliminaries for Theorem 2.

• Initial hypersurface. Let $(u_0, v_0) \in \mathcal{Q}_{\mathcal{R}}$. Define $\mathcal{C} := \mathcal{C}_+ \cup \overline{\mathcal{C}_-}$ in $\mathcal{Q}_{\mathcal{R}}$, where $\mathcal{C}_+ = \{u_0\} \times [v_0, 0)$; and $\overline{\mathcal{C}_-} = [u_0, u_s] \times \{v_0\}$

 Spherically symmetric homogeneous linear wave equation with characteristic initial data:

$$\Box_{g}\psi(u,v) = 0 \quad \in D^{+}(\mathcal{C}), \text{ in coordinates } \iff \\ \partial_{u}\partial_{v}\psi(u,v) = -(\ln r)_{,u}\psi_{,v} - (\ln r)_{,v}\psi_{,u} \in D^{+}(\mathcal{C}) \tag{3} \\ \psi|_{\mathcal{C}} = \mathring{\psi}, \text{ where } \mathring{\psi}|_{\mathcal{C}_{+}} \in C^{2}(\mathcal{C}_{+}) \text{ and } \mathring{\psi}|_{\overline{\mathcal{C}_{-}}} \in C^{2}(\overline{\mathcal{C}}_{-}) \tag{4}$$

9 / 14

Scalar field characteristic IVP. Statement of Theorem 2.

Theorem 2 (Wave equation blow-up on CH^+)

Let ψ be a C^2 solution of the characteristic initial value problem for the wave equation. Assume that the null derivatives of the initial data satisfy the monotonicity assumptions $\partial_u \psi|_{\overline{C_-}} > 0$ and $\partial_v \psi|_{C_+} > 0$. Then

$$\partial_{\nu}\psi(u,\nu) \gtrsim \inf_{\overline{C_{-}}} \left(\partial_{u}\psi\right) \int_{u_{0}}^{u} (-r_{,\nu})(u',\nu)du'$$
(5)

Scalar field characteristic IVP. Steps to prove Theorem 2.

Prove that monotinicity is propagated in D(C) i.e. $\partial_u \psi > 0, \partial_v \psi > 0$ in D(C). (bootstrap argument similar to [3])

Proposition 3 (Monotonicity is propagated in the interior).

Let $v_1 \in (v_0/2, 0)$ be arbitrary and let

$$c := \min\{\inf_{\overline{\mathcal{C}_{-}}} \partial_u \mathring{\psi}, \inf_{\mathcal{C}_{+} \cap [v_0, v_1]} \partial_v \mathring{\psi}\} > 0$$
(6)

Under the hypotheses of Theorem 2, $\partial_u \psi(u, v) \ge c \text{ and } \partial_v \psi(u, v) \ge c \text{ in } [u_0, u_1] \times [v_0, v_1].$

Scalar field characteristic IVP. Steps to prove Theorem 2.

• Prove that monotinicity is propagated in D(C) i.e. $\partial_u \psi > 0, \partial_v \psi > 0$ in D(C). (bootstrap argument similar to [3])

Proposition 3 (Monotonicity is propagated in the interior).

Let $v_1 \in (v_0/2, 0)$ be arbitrary and let

$$c := \min\{\inf_{\overline{\mathcal{C}}_{-}} \partial_{u} \psi, \inf_{\mathcal{C}_{+} \cap [v_{0}, v_{1}]} \partial_{v} \psi\} > 0$$
(7)

Under the hypotheses of Theorem 2, $\partial_u \psi(u, v) \ge c$ and $\partial_v \psi(u, v) \ge c$ at every $(u, v) \in [u_0, u_1] \times [v_0, v_1]$.

Integrate the wave equation to obtain (5).

Since \mathcal{CH}^+ is a WNS, $\partial_v r \to -\infty$, so $\partial_v \psi \to \infty$.

Conclusion

Under reasonable assumptions, the two matter models show wildly different behaviour near the WNS:

- For admissible initial data, (ρ, U) stay regular in the following sense: no crossing of fluid trajectories, no blow-up of energy density.
- Under monotonicity assumption on the initial data the solution of the wave equation blows up in C¹: ∂_νψ →0/∞∞.

Thank you for listening!

References

- D. Christodolou. "The formation of black holes and singularities in spherically symmetric gravitational collapse". In: (). URL: https://doi.org/10.1002/cpa.3160440305.
- M. Dafermos. "Black holes without spacelike singularities". In: (). URL: https://doi.org/10.48550/arXiv.1201.1797.
- [3] J. Sbierski G. Fournodavlos. "Generic blow-up results for the wave equation in the interior of a Schwarzschild black hole". In: (). URL: https://doi.org/10.48550/arXiv.1804.01941.
- [4] S-J. Oh J. Luk. "Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data I. The interior of the black hole region.". In: (). URL: https://doi.org/10.48550/arXiv.1702.05715.
- J. Sbierski. "On holonomy singularities in general relativity & the C^{0,1}_{loc} -inextendibility of spacetimes". In: (). URL: https://doi.org/10.48550/arXiv.2007.12049.