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Strong Cosmic Censorship in General Relativity

SCC (C 2 formulation), Christodolou [1]
Maximal globally hyperbolic future developments for the Einstein Field
Equations corresponding to generic asymptotically flat initial data are
future-inextendible as time-oriented Lorentzian manifolds with C 2

metrics.

Scalar field perturbation of RN =⇒ the Cauchy horizon is a WNS
=⇒ does not violate SCC [2, 4].
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The Einstein-Maxwell scalar field class of spacetimes

M = Q× S2 = (−∞, 0)2 × S2, g = −e2ωdudv + r2(u, v)dΩ2
2

eω and r are smooth and positive in Q and extend continuously to
positive functions on CH+

In the region of interest R = QR × S2 ⊂ M:
r,v → −∞ as v → 0− for all u ∈ (−∞, us) (CH+ = {v = 0} = WNS)

r,u < 0 and r,v < 0 in R.
Important L1 bounds of geometric quantities hold specifically in R.
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Spherical dust. Preliminaries for Theorem 1
Definition ((n0,N0,CK )-admissible curve)
Let λ : (−a, a) → QR be a (nonconstant) smooth spacelike curve. Let
0 < n0 < N0,CK > 0. Say λ is an (n0,N0,CK )-admissible curve if
∀α ∈ (−a, a)

1 u[λ(α)] > −∞
2 n0 < |(λ′)u|, |(λ′)v | < N0 (λ′ ≡ tangent to λ)

3 ’Curvature of λ’ =

∣∣∣∣∣
〈
λ′,∇λ′ν

〉〈
λ′,λ′

〉 ∣∣∣∣∣ ≤ CK (ν(α) ≡ f-d unit normal to λ)

4 v [λ(α)] < us−u[λ(α)]
Cg

×
(
− (λ′)v (α)

(λ′)u(α)

)
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Spherical dust. Preliminaries for Theorem 1

Definition (Geodesic variation based on λ)
Given a (n0,N0,CK )-admissible curve λ define the geodesic variation
based on λ to be the map Γ, given by

Γ(α, τ) := expλ(α)(τν(α)) (1)

on D = {(α, τ) ∈ R2 : −a < α < a; 0 ≤ τ ≤ T (α)} (2)

where α 7→ T (α) is defined by the condition v
[
Γ(α,T (α))

]
= 0.

Denote by D0 be the interior of D and by Γ := Γ|D0 the restriction of Γ to
D0.
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Spherical dust. Statement of Theorem 1

Theorem 1 (Regularity of Spherical Dust)

Given a (n0,N0,CK )-admissible curve λ, let Γ : D → Γ(D) ⊂ QR be the
geodesic variation based on λ. Then there exists a small enough vmin
depending on CK , n0 and N0 such that if λv (α) > vmin for all α ∈ (−a, a)
then

1 Γ : D0 →Image(Γ) ⊂ QR is a diffeomorphism.
2 Γ : D →Image(Γ) ⊂ QR is a homeomorphism.
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Spherical dust. Statement of Theorem 1

Theorem 1 (Regularity of Spherical Dust), continued
Consider spherically symmetric dust in R with 4-velocity vector field
U(u, v) = ∂τΓ ◦ Γ−1(u, v) at all points in Image(Γ) ⊂ QR. Let ρ = ρ(u, v)
to be the energy density of the dust on Image(Γ) ⊂ QR.

Assume that ρ is smooth and positive on Image(λ) and extends to a
positive function on Image(λ), and that U and ρ satisfy the transport
equation on Γ(D0). Then

3 ∃C > 0, depending on ∥ρ∥C0(λ), n0, N0, vmin and Cg such that
ρ(u, v) ≤ C in Image(Γ).
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Spherical dust. Key steps in the proof.
1 Prove that the Jacobi field along an infalling

radial timelike geodesic based λ stays bounded and
bounded away from zero.

2 Prove Γ : D0 →Image(Γ)⊂ QR is locally
a diffeomorphism in the interior & injective.
Conclude Γ is a diffeomorphism onto its image.

3 Prove that α 7→ Γ(α,T (α)) ∈ CH+ is injective and depends
continuously on α. Conclude that Γ is a homeomorsphism onto its
image

4 Integrate the tranpsort equation −→ prove that ρ is bounded.
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Scalar field characteristic IVP. Preliminaries for Theorem 2.

Initial hypersurface. Let (u0, v0) ∈ QR. Define C := C+ ∪ C− in
QR, where C+ = {u0} × [v0, 0); and C− = [u0, us ]× {v0}

Spherically symmetric homogeneous linear wave equation with
characteristic initial data:

□gψ(u, v) = 0 ∈ D+(C), in coordinates ⇐⇒
∂u∂vψ(u, v) = −(ln r),uψ,v − (ln r),vψ,u ∈ D+(C) (3)

ψ|C = ψ̊, where ψ̊|C+ ∈ C 2(C+) and ψ̊|C− ∈ C 2(C−) (4)
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Scalar field characteristic IVP. Statement of Theorem 2.

Theorem 2 (Wave equation blow-up on CH+)

Let ψ be a C 2 solution of the characteristic initial value problem for the
wave equation. Assume that the null derivatives of the initial data satisfy
the monotonicity assumptions ∂uψ̊|C− > 0 and ∂v ψ̊|C+ > 0. Then

∂vψ(u, v) ≳ inf
C−

(
∂uψ̊

) ∫ u

u0

(−r,v )(u
′, v)du′ (5)
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Scalar field characteristic IVP. Steps to prove Theorem 2.
1 Prove that monotinicity is propagated in D(C) i.e.
∂uψ > 0, ∂vψ > 0 in D(C). (bootstrap argument similar to [3])

Proposition 3 (Monotonicity is propagated in the interior).
Let v1 ∈ (v0/2, 0) be arbitrary and let

c := min{inf
C−
∂uψ̊, inf

C+∩[v0,v1]
∂v ψ̊} > 0 (6)

Under the hypotheses of Theorem 2,
∂uψ(u, v) ≥ c and ∂vψ(u, v) ≥ c in [u0, u1]× [v0, v1].
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1 Prove that monotinicity is propagated in D(C) i.e.
∂uψ > 0, ∂vψ > 0 in D(C). (bootstrap argument similar to [3])

Proposition 3 (Monotonicity is propagated in the interior).
Let v1 ∈ (v0/2, 0) be arbitrary and let

c := min{inf
C−
∂uψ̊, inf

C+∩[v0,v1]
∂v ψ̊} > 0 (7)

Under the hypotheses of Theorem 2,
∂uψ(u, v) ≥ c and ∂vψ(u, v) ≥ c at every (u, v) ∈ [u0, u1]× [v0, v1].

2 Integrate the wave equation to obtain (5).
3 Since CH+ is a WNS, ∂v r → −∞, so ∂vψ → ∞.
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Conclusion

Under reasonable assumptions, the two matter models show wildly different
behaviour near the WNS:

For admissible initial data, (ρ,U) stay regular in the following sense:
no crossing of fluid trajectories, no blow-up of energy density.
Under monotonicity assumption on the initial data the solution of the
wave equation blows up in C 1: ∂vψ

v→0−−−→ ∞.

Thank you for listening!
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