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Strong Cosmic Censorship in General Relativity

SCC (C? formulation), Christodolou [1]

Maximal globally hyperbolic future developments for the Einstein Field
Equations corresponding to generic asymptotically flat initial data are
future-inextendible as time-oriented Lorentzian manifolds with C?
metrics.
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@ Scalar field perturbation of RN = the Cauchy horizon is a WNS
= does not violate SCC [2, 4].
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The Einstein-Maxwell scalar field class of spacetimes

o M =0Qx5%=(-0,0)2x 52, g = —e*dudv + r?*(u, v)dQ3
@ e“ and r are smooth and positive in @ and extend continuously to
positive functions on CH™
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The Einstein-Maxwell scalar field class of spacetimes

o M =0Qx5%=(-0,0)2x 52, g = —e*dudv + r?*(u, v)dQ3
@ €“ and r are smooth and positive in @ and extend continuously to
positive functions on CH™
In the region of interest R = Qr x S C M:
er,— —ocasv— 0 forall ue (—oo,us) (CH" ={v=0}=WNS)
er,<0andr, <0inTR.
e Important L! bounds of geometric quantities hold specifically in R.
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Spherical dust. Preliminaries for Theorem 1

Definition ((no, No, Ck )-admissible curve)

Let A: (—a,a) — Qg be a (nonconstant) smooth spacelike curve. Let
0 < np < Np, Cx > 0. Say A is an (g, No, Cx)-admissible curve if
Va € (—a, a)

Q u[Ma)] > —0

Q@ no < |[(N)Y],|(N)Y] < No (N = tangent to \)
<A/,V)\/V>

(vx)

Q v[A(a)] < el (— 8132&3)

© 'Curvature of \' =

< Ck (v(«) = f-d unit normal to \)
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Spherical dust. Preliminaries for Theorem 1

Definition (Geodesic variation based on \)

Given a (no, No, CK)-admissi_bIe curve \ define the geodesic variation
based on ) to be the map I, given by

Mo, 7) 1= expy(a) (T1()) (1)
onD={(a,7)€ER?*: —a<a<a 0<7<T(a)} (2)
where a — T(a) is defined by the condition v [[(a, T(c))] = 0.

Denote by DO be the interior of D and by I := T'|po the restriction of T to
DO.




Spherical dust. Statement of Theorem 1

Theorem 1 (Regularity of Spherical Dust)

Given a (ng, No, Ck )-admissible curve \, let T : D — T(D) C Qg be the
geodesic variation based on \. Then there exists a small enough vVpmin
depending on Cy, ny and Ny such that if \Y(«) > vpin for all a« € (—a, a)
then

Q I : D% —image(l) C Qr is a diffeomorphism.

Q I : D —Image(T) C Or is a homeomorphism.
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\;\ I/'

6/ 14



Spherical dust. Statement of Theorem 1

Theorem 1 (Regularity of Spherical Dust), continued
Consider spherically symmetric dust in R with 4-velocity vector field
U(u,v) = 0;T oTY(u, v) at all points in Image(I') C Or. Let p = p(u,v)
to be the energy density of the dust on Image(I') C Ox.
Assume that p is smooth and positive on Image()\) and extends to a
positive function on Image()\), and that U and p satisfy the transport
equation on (D). Then

© 3C >0, depending on ||p||co(x). o, No, vmin and Cg such that

p(u,v) < C in Image(T).
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Spherical dust. Key steps in the proof.

@ Prove that the Jacobi field along an infalling
radial timelike geodesic based )\ stays bounded and
bounded away from zero.

A 22
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Spherical dust. Key steps in the proof.

2]

Prove that the Jacobi field along an infalling

radial timelike geodesic based )\ stays bounded and
bounded away from zero.

Prove I' : D% —Image(I)C Qg is locally

a diffeomorphism in the interior & injective.
Conclude T is a diffeomorphism onto its image.
Prove that a — [(«a, T(a)) € CH™ is injective and depends
continuously on a. Conclude that T is a homeomorsphism onto its
image .
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Spherical dust. Key steps in the proof.

2]

o

Prove that the Jacobi field along an infalling

radial timelike geodesic based )\ stays bounded and
bounded away from zero.

Prove I' : D% —Image(I)C Qg is locally

a diffeomorphism in the interior & injective.
Conclude T is a diffeomorphism onto its image.
Prove that a — [(«a, T(a)) € CH™ is injective and depends
continuously on a. Conclude that T is a homeomorsphism onto its
image
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Integrate the tranpsort equation — prove that p is bounded.
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Scalar field characteristic IVP. Preliminaries for Theorem 2.

o Initial hypersurface. Let (ug, vo) € Qr. Define C:=C, UC_ in
Or, where C = {up} % [w,0); and C_ = [ug, us] x {vo}

@ Spherically symmetric homogeneous linear wave equation with
characteristic initial data:

Ogt(u,v) =0 € DT(C), in coordinates <=
Budyp(u,v) = —(Inr) yihy — (Inr) vip,, € DF(C) (3)
Yl = 1), where P, € C*(Cy) and Plo— € C*(C-) (4)
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Scalar field characteristic IVP. Statement of Theorem 2

Theorem 2 (Wave equation blow-up on CH™)

Let 1) be a C? solution of the characteristic initial value problem for the
wave equation. Assume that the null derivatives of the initial data satisfy
the monotonicity assumptions 0,|— > 0 and 0,%|c, > 0. Then

0, (u,v) Z inf (9.1 / (e (5)

v,
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Scalar field characteristic IVP. Steps to prove Theorem 2.

@ Prove that monotinicity is propagated in D(C) i.e.
Oup > 0,0,¢ > 0in D(C). (bootstrap argument similar to [3])

Proposition 3 (Monotonicity is propagated in the interior).
Let v; € (v/2,0) be arbitrary and let

¢ := min{inf 8u7,2,c inf 9,4} >0 (6)
C_

+N[vo,v1]

Under the hypotheses of Theorem 2,
Out(u,v) > c and 9,¢(u,v) > cin [ug, u1] X [vo, v1].
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Scalar field characteristic IVP. Steps to prove Theorem 2.

@ Prove that monotinicity is propagated in D(C) i.e.
Oy > 0,01 > 0in D(C). (bootstrap argument similar to [3])

Proposition 3 (Monotonicity is propagated in the interior).
Let vi € (v/2,0) be arbitrary and let

¢ := min{inf 8,,1/;,6 inf 9,0} >0 (7)
C_

+N[vo,v1]

Under the hypotheses of Theorem 2,
Ou(u,v) > c and 9,9¢(u,v) > c at every (u,v) € [ug, u1] X [vo, va].

@ Integrate the wave equation to obtain (5).
© Since CH™' is a WNS, d,r — —00, so 0,1 — oo.
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Conclusion

Under reasonable assumptions, the two matter models show wildly different
behaviour near the WNS:
e For admissible initial data, (p, U) stay regular in the following sense:
no crossing of fluid trajectories, no blow-up of energy density.

@ Under monotonicity assumption on the initial data the solution of the
. . 0
wave equation blows up in C!: 8,1 L5 .

Thank you for listening!
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