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Hawking mass

Definition (Hawking mass)

Let (M, g) be a 3-Riemannian manifold embedded in a spacetime (L , ḡ), and let
Σ ⊂ M be a closed 2-surface. Then, we define the Hawking mass as

mH(Σ) =
1

4π

√
|Σ|
16π

(
4π − 1

4

∫
Σ

H2dσ
)
, (1)

where 1
4

∫
Σ

H2dσ is known as the Willmore energy.
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Generalized Willmore energy

Theorem (Willmore-type inequality)
Let (M, g) be a complete, non-compact, Riemannian n-manifold with Ric ≥ 0 and
Euclidean Volume Growth. If Ω ⊂ M is bounded and open subset with smooth
boundary, then ∫

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣n−1

dσ ≥ AVR(g)|Sn−1| (2)

where AVR(g) ∈ (0, 1] is the asymptotic volume ratio of (M, g). Moreover, the equality
holds if and only if (M \ Ω, g) is isometric to the exterior of a sphere in a round cone.
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Consequences from Generalized Willmore energy

Corollary
This is a generalization of the Willmore inequality in Euclidean space∫

∂Ω

∣∣∣∣ H
n − 1

∣∣∣∣n−1

dσ ≥ |Sn−1|,

with equality if and only if Ω is a round ball.

Corollary
Considering the Asymptotically Euclidean case of the Willmore inequality, i.e. AVR = 1,
for 3-manifolds excluding round cones, then

mH(Σ) < 0.

And since in a large sphere limit the Hawking mass converges to the ADM energy, then

EADM < 0.
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Generalized Willmore energy

This inequality was stated in Agostiniani-Fogagnolo-Mazzieri’19 and proved using
Potential Theory.

We will show a new proof à la Robinson, which generalizes the proof by
Cederbaum-Miehe’24 for the Euclidean Willmore inequality.

Advantages of this new proof:

Simpler analytically and computationally.

No need of conformal transformation.

No “invention” of monotone quantities.

More transparent.

The functionals of both proofs are related.
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We will show a new proof à la Robinson, which generalizes the proof by
Cederbaum-Miehe’24 for the Euclidean Willmore inequality.

Advantages of this new proof:

Simpler analytically and computationally.

No need of conformal transformation.

No “invention” of monotone quantities.

More transparent.

The functionals of both proofs are related.
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We will show a new proof à la Robinson, which generalizes the proof by
Cederbaum-Miehe’24 for the Euclidean Willmore inequality.

Advantages of this new proof:

Simpler analytically and computationally.

No need of conformal transformation.

No “invention” of monotone quantities.

More transparent.

The functionals of both proofs are related.
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We will show a new proof à la Robinson, which generalizes the proof by
Cederbaum-Miehe’24 for the Euclidean Willmore inequality.

Advantages of this new proof:

Simpler analytically and computationally.

No need of conformal transformation.

No “invention” of monotone quantities.

More transparent.

The functionals of both proofs are related.
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Robinson’s method

It comes from proving static vacuum Black Hole uniqueness by Robinson’77.

Similar method for analysis and classification of Ricci solitons by Cao-Chen’12.

This has recently been generalized to higher dimensions by
Cederbaum-Cogo-Leandro-Paolo dos Santos ’24 (see also
Nozawa-Shiromizu-Izumi-Yamada’18).

This paper also conveys the proof of the uniqueness of photon surfaces, and this
can also be seen in Cederbaum-Cogo-Fehrenbach’24.

This is also the method employed by Cederbaum-Miehe’24 to prove the Eclidean
Willmore inequality aforementioned.

Ongoing work to prove it when using p-harmonic functions for the Minkowski
inequality by Babisch-Cederbaum.
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Sketch of the Proof

We are dealing with the following boundary value problem, which is considered by
potential theory by Agostiniani-Fogagnolo-Mazzieri.

∆u = 0 in M \ Ω̄
u = 1 on ∂Ω

u → 0 as |x | → +∞
(3)

Make the following ansatz for the vector field:

X = F (u)∇|∇u|β + G(u)|∇u|β∇u

We calculate its divergence, finding:

A coupled ODES for the functions F (u) and G(u), and

it is non-negative.
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Sketch of the Proof II

We apply the divergence theorem, check integrability across critical and due to the
non-negativity of the divergence of the vector field we can obtain, for c + d ≥ 0
and d ≥ 0,

d(n − 2)β+1AVR(g)
β

n−2 Cap(Ω)
n−2−β

n−2 |Sn−1| ≤ β(c + d)
∫
∂Ω

|∇u|βg H dσ

+

(
−n − 1

n − 2
β(c + d) + d

)∫
∂Ω

|∇u|β+1
g dσ (4)

We set β = n − 2 and d = −c ̸= 0 in (9).

Applying standard methods we obtain the generalized Willmore inequality
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Relation to Potential Theory

By the method of Potential Theory of Agostiniani-Fogagnolo-Mazzieri’19, they
prove the Willmore inequality by studying the monotonicity of the following
functional Uβ : (0, 1] → R defined as

Uβ(t) = t−β n−1
n−2

∫
{u=t}

|∇u|β+1
g dσ, (5)

which is monotone non-decreasing.

Define the following functional which depends on the vector field X from
Robinson’s method,

H c,d
β (t) =

∫
{u=t}

⟨X , ν⟩dσ

=

∫
{u=t}

βF (u)|∇u|βg H + G(u)|∇u|β+1
g dσ (6)

Relation between the functionals,

H 1,0
β = U

′
β
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Outlook

Potential theory allows us to prove Hamilton’s conjecture,

Theorem (Hamilton’s Pinching Conjecture)
Let (M, g) be a complete, connected, non-compact Riemannian Ricci–pinched
3–manifold. Suppose that (M, g) has Euclidean volume growth, then it is flat.

This was previously proved by Ricci flow (Chen-Zhu’00, Deruelle- Schulze-Simon’
22, Lott’24, and Lee-Topping’24 ), by Inverse Mean Curvature Flow
(Huisken-Körber’24) and by Potential Theory
(Benatti-Mantegazza-Oronzio-Pluda’24 and in my master thesis).

Proving this conjecture by Robinson’s method is an ongoing project.

Future projects:
Proof of Positive Mass Theorem.
Proof of Penrose Inequality.
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Thank you for your attention!
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Divergence Inequality

Theorem (Divergence Inequality)

Let u be a solution to 3. Then, on M \
(
Ω̄ ∩ Critu

)
, the following

divg

(
F (u)∇|∇u|βg + G(u)|∇u|βg ∇u

)
|∇u|2g

≥ aβF (u)
∣∣∣∣∇|∇u|2g − 2(n − 1)

(n − 2)u
|∇u|2g∇u

∣∣∣∣2
g
|∇u|β−2

g (7)

holds with the constant aβ = β
4

(
β − n−2

n−1

)
for β ≥ 0 and the functions

F (u) = cu−β n−1
n−2 +2 + du−β n−1

n−2 +1,

G(u) = −β
n − 1

(n − 2)u
F (u) + du−β n−1

n−2 ,

where c, d ∈ R.
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Proof of the Divergence Inequality Theorem

Calculate the divergence.

Apply Bochner formula for general Riemannian metric and apply the reduced
Kato’s identity

∆g |∇u|2g − ⟨∇|∇u|2g ,∇u⟩g = 2
(

Ric(∇u,∇u) + |∇∇u|2g
)
,

|∇2u|2g ≥ n
n − 1

|∇|∇u|g |2g ,

and also use the fact that Ric ≥ 0.

Calculate the square of the RHS of 7 and compare the coefficients gives coupled
ODEs for F (u) and G(u), and solve the ODEs.
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Parametric Geometric Inequality

Theorem (Parametric geometric inequality)
Let u be a solution to (3) with Ω bounded domain with smooth boundary. For c, d ∈ R
such that F (u) given before and β ≥ n−2

n−1 , we get

d(n − 2)β+1AVR(g)
β

n−2 Cap(Ω)
n−2−β

n−2 |Sn−1| ≤ β(c + d)
∫
∂Ω

|∇u|βg Hdσ (8)

+

(
−n − 1

n − 2
β(c + d) + d

)∫
∂Ω

|∇u|β+1
g dσ

(9)

Moreover, the equality holds if and only if (M \ Ω, g) is isometric to(
[r0,+∞)× ∂Ω, dr ⊗ dr + (r/r0)

2g∂Ω

)
, with r0 =

(
|∂Ω|

AVR(g)|Sn−1|

)
. (10)

In particular, ∂Ω is a connected totally umbilic submanifold with constant mean
curvature.
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Proof of Parametric Geometric Inequality

Apply the divergence theorem in the left hand side of the just obtained divergence
inequality (7), for c, d s.t. F (u) ≥ 0 and β ≥ n−2

n−1 , thus obtaining

0 ≤
∫
{u<1}

divgZdµ =

∫
∂Ω

βF (u)|∇u|βg H + G(u)|∇u|β+1
g dσ (11)

− lim
t→0

∫
{u=t}

βF (u)|∇u|βg H + G(u)|∇u|β+1
g dσ. (12)

Evaluate the first term.

Calculate the second term using the asymptotic for u,

lim
|x|→+∞

u(x)
|x |2−n =

Cap(Ω)
AVR(g)

(13)

and the definition of electrostatic capacity of Ω as

Cap(Ω) = inf{ 1
(n − 2)|Sn−1|

∫
M
|∇u|2dµ | u ∈ C ∞

c , u = 1 in Ω} (14)
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Proof of the Willmore inequality

In the first place, we set β = n − 2 and d = −c ̸= 0 in (9).

Then we apply the following Corollary.

Corollary (Lp-norm of the normal derivative)
If u solves (3), then we have that

∥∇u∥Lp(∂Ω) ≤
n − 2
n − 1

∥H∥Lp(∂Ω) (15)

with equality in the rigidity case
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