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» Ultimate goal: Understanding generic (spacelike) singularities.

» The Belinski-Khalatnikov-Lifshitz (BKL) picture:
Generic spacelike singularities are, for a broad range of matter,
vacuum dominated, local, and oscillatory.

» Most general vacuum Bianchi models: types VIII, IX, VI_; g
(4D state spaces & oscillatory singularities).

> Only the type VI_; /9 models have the general G, models (the
simplest inhomogeneous models with an oscillatory singularity)
as a spatially homogeneous limit.

> Present goal: Describe the stable oscillations for the vacuum
Bianchi type VI_; /9 models.
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» Hubble-normalized orthonormal frame approach to obtain an
ODE for the variables (X1, ¥2,%3, Ry, R3, N_, A) € R'.

» The singularity is rescaled to be at t = 4oc.
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» We parametrize points in (132) by the Kasner parameter
u € [1,00], which has 6 representations i, one in each sector.
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Introduction

Stratification of higher dimensional invariant sets
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Invariant subsets

The Kasner subset: N_ = A= 0 (frame transitions)

Type VI_y,9

» We explicitly solve them. L <

> We describe the a- and w-limits. A Xt

Figure: Projection of heteroclinic orbits onto in (X1, ¥, ¥3)-space.
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Invariant subsets

The type Il subset: R; = A =0 (curvature transitions)
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Invariant subsets

The type Il subset: R; = A =0 (curvature transitions)

L <
\
¥

» We describe the a- and w-limits. < >
A w

> We explicitly solve them.

Figure: Projection of heteroclinic orbits onto (X1, X5, ¥3)-space.
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Invariant subsets

The OT (Ri =0) and HO (¥; = R3 = N_ = 0) subsets.

Phillipo Lappicy The Bianchi type VI_1/9 vacuum models 6 /12



Invariant subsets

The OT (Ri =0) and HO (¥; = R3 = N_ = 0) subsets.
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Invariant subsets

The OT (Ri =0) and HO (X; = R3 = N_ = 0) subsets.
P
> We describe their a- and —
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Figure: Schematic structure of the sets OT (left) and HO (right).
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Invariant subsets

Attractor conjecture

» BKL: Generic orbits should shadow heteroclinic chains of types
I, II and their dynamics should be governed by the BKL map.
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Invariant subsets

Attractor conjecture

» BKL: Generic orbits should shadow heteroclinic chains of types
I, II and their dynamics should be governed by the BKL map.

» Conjecture (Hewitt, Horwood, Wainwright '02):

A=K°U Tr, U TRy UTRirs UTn. U TR N
A=K° UTr, UTr, UTN_.

» (Mixmaster) Attractor Theorems:
> Bianchi IX (H. Rinsgtréom, '00),
> Bianchi VIII (B. Brehm, '16).

> Next goal: construct examples of heteroclinic chains under the
BKL map, which are candidates to yield stable oscillations.
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Discrete dynamics

Hexagon description for each Kasner parameter u

» For each u € (1,00), we consider its six representations i

(vertices of a graph), one in each sector.

312)T> (312) (213)
(32 32)
Ty, (321) (123)
(231 23)
Ts (231) (132)
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Hexagon description for each Kasner parameter u

» For each u € (1,00), we consider its six representations i
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» Starting with & € (321), we consider the heteroclinic network
(edges of the hexagon graph) obtained via frame-transitions.
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Discrete dynamics

Hexagon description for each Kasner parameter u

» For each u € (1,00), we consider its six representations i
(vertices of a graph), one in each sector.

» Starting with & € (321), we consider the heteroclinic network
(edges of the hexagon graph) obtained via frame-transitions.

> The sectors notation are omitted and replaced with dots.
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Discrete dynamics

Connecting hexagons: the BKL map

» The Kasner parameters u_ and u, yield two hexagons using
the graph representations.
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Discrete dynamics

Connecting hexagons: the BKL map

» The Kasner parameters u_ and u, yield two hexagons using
the graph representations.

» The BKL map, u_ > uy, yields two rules for how to connect
such hexagons through heteroclinic orbits:

No era change: uy =u_ — 1. Era change: uy =1/(u_ —1).

» Note there may be fixed points that can not be reached
(hollow dots). This yields an isolated structure.

» All heteroclinic chains can be represented using hexagons and
we can describe all their isolated structures!
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Discrete dynamics

Example: the golden ratio v = (1 + v/5)/2
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Figure: Type VIII and IX.

» Codim. 1 stable oscillations:
> Béguin '10
» Liebscher, Rendall et al '10, '12
» Béguin, Dutilleul 24
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Figure: Type VI_, .

» The full network is T g, g, (17 € (321)) U T ryn_ (i1 € (132)).
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Discrete dynamics

Example: the golden ratio v = (1 + v/5)/2
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Discrete dynamics

Example: the silver ratio v =1+ /2
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Figure: Type VI_; /9 (we omit the multiple-transitions).
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Conclusion

Discussion

» We described the Type I, 11, HO, OT asymptotic dynamics.
» Conjeture: Attractor Theorem a la Ringstrom.

» Differently than Bianchi VIII and IX, not all heteroclinic chains
are relevant: there are jsolated structures!

» Conjecture: Quantify how common isolated structures are.

> We constructed explicit examples of cyclic heteroclinic chains.

» Conjecture: Stable oscillations following the heteroclinic chains
a la Beguin, Liebscher et al. If this is the case, can one show
stable BKL oscillations for inhomogeneous models?

Thank you.
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