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Introduction



Introduction Invariant subsets Discrete dynamics Conclusion

Why the vacuum Bianchi type VI−1/9 models?

▶ Ultimate goal: Understanding generic (spacelike) singularities.

▶ The Belinski-Khalatnikov-Lifshitz (BKL) picture:
Generic spacelike singularities are, for a broad range of matter,
vacuum dominated, local, and oscillatory.

▶ Most general vacuum Bianchi models: types VIII, IX, VI−1/9
(4D state spaces & oscillatory singularities).

▶ Only the type VI−1/9 models have the general G2 models (the
simplest inhomogeneous models with an oscillatory singularity)
as a spatially homogeneous limit.

▶ Present goal: Describe the stable oscillations for the vacuum
Bianchi type VI−1/9 models.
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Bianchi VI−1/9 vacuum model

▶ Hubble-normalized orthonormal frame approach to obtain an
ODE for the variables (Σ1,Σ2,Σ3,R1,R3,N−,A) ∈ R7.

▶ The singularity is rescaled to be at t = +∞.
▶ Fixed points: the Robinson-Trautman (RT), the plane wave

arc (PW±), and the Kasner circle:

K# :=

{
(Σ1,Σ2,Σ3, 0, 0, 0, 0) ∈ R7

∣∣∣ 1 − Σ2 = 0,
Σ1 +Σ2 +Σ3 = 0

}
.

Σ1

Σ3

Σ2

T1

T3

T2

(132)

(123)

(213)

(231)

(321)

(312)

ǔ

T1

T3

T2

N−

R1,N−

R1

R1,R3

R3

R3

▶ We parametrize points in (132) by the Kasner parameter
u ∈ [1,∞], which has 6 representations ǔ, one in each sector.
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ǔ

T1

T3

T2

N−

R1,N−

R1

R1,R3

R3

R3

▶ We parametrize points in (132) by the Kasner parameter
u ∈ [1,∞], which has 6 representations ǔ, one in each sector.
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Stratification of higher dimensional invariant sets

Type VI−1/9

TR1R3 TR1N− OT

TR1 TR3 TN− HO
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The Kasner subset: N− = A = 0 (frame transitions)

▶ We explicitly solve them.

▶ We describe the α- and ω-limits.

Type VI−1/9

TR1R3 TR1N− OT

TR1 TR3 TN− HO

TR1

K#
+

K#
−

TR3 TR1R3

Figure: Projection of heteroclinic orbits onto in (Σ1,Σ2,Σ3)-space.

Phillipo Lappicy The Bianchi type VI−1/9 vacuum models 4 / 12



Introduction Invariant subsets Discrete dynamics Conclusion

The Kasner subset: N− = A = 0 (frame transitions)

▶ We explicitly solve them.

▶ We describe the α- and ω-limits.

Type VI−1/9

TR1R3 TR1N− OT

TR1 TR3 TN− HO

TR1

K#
+

K#
−

TR3 TR1R3

Figure: Projection of heteroclinic orbits onto in (Σ1,Σ2,Σ3)-space.

Phillipo Lappicy The Bianchi type VI−1/9 vacuum models 4 / 12



Introduction Invariant subsets Discrete dynamics Conclusion

The Kasner subset: N− = A = 0 (frame transitions)

▶ We explicitly solve them.

▶ We describe the α- and ω-limits.

Type VI−1/9

TR1R3 TR1N− OT

TR1 TR3 TN− HO

TR1

K#
+

K#
−

TR3 TR1R3

Figure: Projection of heteroclinic orbits onto in (Σ1,Σ2,Σ3)-space.

Phillipo Lappicy The Bianchi type VI−1/9 vacuum models 4 / 12



Introduction Invariant subsets Discrete dynamics Conclusion

The Kasner subset: N− = A = 0 (frame transitions)

▶ We explicitly solve them.

▶ We describe the α- and ω-limits.

Type VI−1/9

TR1R3 TR1N− OT

TR1 TR3 TN− HO

TR1

K#
+

K#
−

TR3 TR1R3

Figure: Projection of heteroclinic orbits onto in (Σ1,Σ2,Σ3)-space.

Phillipo Lappicy The Bianchi type VI−1/9 vacuum models 4 / 12



Introduction Invariant subsets Discrete dynamics Conclusion

The Kasner subset: N− = A = 0 (frame transitions)

▶ We explicitly solve them.

▶ We describe the α- and ω-limits.

Type VI−1/9

TR1R3 TR1N− OT

TR1 TR3 TN− HO

TR1

K#
+

K#
−

TR3 TR1R3

Figure: Projection of heteroclinic orbits onto in (Σ1,Σ2,Σ3)-space.

Phillipo Lappicy The Bianchi type VI−1/9 vacuum models 4 / 12



Introduction Invariant subsets Discrete dynamics Conclusion

The type II subset: R3 = A = 0 (curvature transitions)

▶ We explicitly solve them.

▶ We describe the α- and ω-limits.
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The OT (R1 = 0) and HO (Σ1 = R3 = N− = 0) subsets.

▶ We describe their α- and
ω-limits.

Type VI−1/9

TR1R3 TR1N− OT

TR1 TR3 TN− HO

SOT

PW±

T3

Σ−

R1

K#
+

K#
−

PW 0
RT

Figure: Schematic structure of the sets OT (left) and HO (right).
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Attractor conjecture

▶ BKL: Generic orbits should shadow heteroclinic chains of types
I, II and their dynamics should be governed by the BKL map.

▶ Conjecture (Hewitt, Horwood, Wainwright ’02):

A = K# ∪ TR1 ∪ TR3 ∪ TR1R3 ∪ TN− ∪ TR1N−

A = K# ∪ TR1 ∪ TR3 ∪ TN− .

▶ (Mixmaster) Attractor Theorems:
▶ Bianchi IX (H. Rinsgtröm, ’00),
▶ Bianchi VIII (B. Brehm, ’16).

▶ Next goal: construct examples of heteroclinic chains under the
BKL map, which are candidates to yield stable oscillations.
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Hexagon description for each Kasner parameter u

▶ For each u ∈ (1,∞), we consider its six representations ǔ
(vertices of a graph), one in each sector.

▶ Starting with ǔ ∈ (321), we consider the heteroclinic network
(edges of the hexagon graph) obtained via frame-transitions.

▶ The sectors notation are omitted and replaced with dots.

T1

T3

T2

(132)

(123)

(213)

(231)

(321)

(312)

(321)

(312) (213)

(231) (132)

(123)

•

• •

• •

•
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Connecting hexagons: the BKL map

▶ The Kasner parameters u− and u+ yield two hexagons using
the graph representations.

▶ The BKL map, u− 7→ u+, yields two rules for how to connect
such hexagons through heteroclinic orbits:

•

• •

• •

• ◦

• •

◦ ◦

•ǔ− ǔ+

No era change: u+ = u− − 1.

•

• •

• •

• •

• •

• •

•ǔ− ǔ+

Era change: u+ = 1/(u− − 1).

▶ Note there may be fixed points that can not be reached
(hollow dots). This yields an isolated structure.

▶ All heteroclinic chains can be represented using hexagons and
we can describe all their isolated structures!
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Example: the golden ratio u = (1 +
√

5)/2

T1

T3

T2

Figure: Type VIII and IX.

▶ Codim. 1 stable oscillations:
▶ Béguin ’10
▶ Liebscher, Rendall et al ’10, ’12
▶ Béguin, Dutilleul ’24

•

• •

• •

•

Figure: Type VI−1/9.

▶ The full network is T R1R3(ǔ ∈ (321))
⋃

T R1N−(ǔ ∈ (132)).
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⋃
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Example: the silver ratio u = 1 +
√

2

T1

T3

T2

Figure: Type VIII and IX.

•

• •

• •

• •

• •

• •

•

• •

•

• •

•

Figure: Type VI−1/9 (we omit the multiple-transitions).
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Discussion

▶ We described the Type I, II,HO,OT asymptotic dynamics.

▶ Conjeture: Attractor Theorem a la Ringström.

▶ Differently than Bianchi VIII and IX, not all heteroclinic chains
are relevant: there are isolated structures!
▶ Conjecture: Quantify how common isolated structures are.

▶ We constructed explicit examples of cyclic heteroclinic chains.
▶ Conjecture: Stable oscillations following the heteroclinic chains

a la Beguin, Liebscher et al. If this is the case, can one show
stable BKL oscillations for inhomogeneous models?

Thank you.
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