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Black hole thermodynamics is a proposed close mathematical analogy between
black hole dynamics and classical thermodynamics.
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BLACK HOLE THERMODYNAMICS

[ Law  Classical thermodynamics Black holes |

Zeroth T constant in equilibrium  surface gravity x constant on stationary horizon

First dE=TdS+--- AM = kdA 4+ - --
Second as >0 dA >0
Third T # 0in finite process surface gravity x / 0 in finite advanced time

» Laws 0, 1, and 2 proved by Hawking, Carter, Bardeen—Carter-Hawking, Wald, ...
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REFRESHER ON SCHWARZSCHILD
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REFRESHER ON SCHWARZSCHILD

Maximally extended Schwarzschild is the unique maximal Cauchy development of the
data induced on a spacelike hypersurface & 2 R x S? as depicted here.
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REFRESHER ON SCHWARZSCHILD

The black hole interior is foliated by trapped spheres
(both future null expansions negative).
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REFRESHER ON GRAVITATIONAL COLLAPSE

r = 0 (singularity)

r=0

(coordinate
singularity) I
[

Penrose diagram of gravitational collapse. One-ended Cauchy data!
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REFRESHER ON SUBEXTREMAL REISSNER-NORDSTROM: 0 < |e| < M
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REFRESHER ON SUBEXTREMAL REISSNER-NORDSTROM: 0 < |e| < M
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Non-negative Hawking mass m = 5 (1 — g(Vr, Vr)) requires r > %
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REFRESHER ON SUBEXTREMAL REISSNER-NORDSTROM: 0 < |e| < M
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REFRESHER ON EXTREMAL REISSNER-NORDSTROM: 0 < |e| = M
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REFRESHER ON EXTREMAL REISSNER-NORDSTROM: 0 < |e| = M

2
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Non-negative Hawking mass requires r > 7.
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REFRESHER ON EXTREMAL REISSNER-NORDSTROM: 0 < |e| = M
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REFRESHER ON SUPEREXTREMAL REISSNER-NORDSTROM: 0 < M < |e|
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REFRESHER ON SUPEREXTREMAL REISSNER-NORDSTROM: 0 < M < |e|
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Non-negative Hawking mass requires r > 7.
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SURFACE GRAVITY k OF REISSNER-NORDSTROM

» RN with mass M and charge ¢, |e]| < M, has

VM2 =2
(M + /M2 — 2)2

k=27T =

» Subextremal: K > 0
» Extremal: kK = 0
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THE THIRD LAW

Original formulation of Bardeen—Carter-Hawking;:

The Third Law

It is impossible by any procedure, no matter how idealized, to reduce
K to zero by a {inite sequence of operations.
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Statement revised by Israel '86:

VOLUME 57, NUMBER 4 PHYSICAL REVIEW LETTERS 28 JULY 1986

Third Law of Black-Hole Dynamics: A Formulation
W. Israel®

Research Institute for Fundamental Physics, Yukawa Hall, Kyoto University, Kyoto 606, Japan
(Received 19 May 1986)
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ISRAEL’S FORMULATION OF THE THIRD LAW

A nonextremal black hole cannot become extremal
(i.e., lose its trapped surfaces) at a finite advanced
time in any continuous process in which the stress-
energy tensor of accreted matter stays bounded and
satisfies the weak energy condition in a neighborhood
of the outer apparent horizon.
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1. “Finite advanced time” replaces “finite sequence of operations.”

2. “Any continuous process”: Fundamentally about non-generic behavior.
» BCH & Israel knew: Adding “generic” would make it a triviality, which does not even
use the Einstein equations! (unlike Cosmic Censorship)
3. “Stress-energy tensor stays bounded” is a regularity condition.

» If singularities allowed, counterexample using massive dust shell.
[FARRUGIA-HAJICEK '79]

4. Weak energy condition must be enforced.
P Otherwise: counterexample using charged null dust. [SULLIVAN-ISRAEL '80]

12/43



RETIRING THE THIRD LAW

Conjecture (The third law, BCH 73, Israel "86).

A subextremal black hole cannot become extremal in finite time by any continuous process, no
matter how idealized, in which the spacetime and matter fields remain regular and obey the
weak energy condition.

13/43



RETIRING THE THIRD LAW

Conjecture (The third law, BCH 73, Israel "86).

A subextremal black hole cannot become extremal in finite time by any continuous process, no
matter how idealized, in which the spacetime and matter fields remain regular and obey the
weak energy condition.

Theorem (K-Unger "22).

There exists a precisely defined process in which a subextremal black hole becomes extremal in
finite time, evolving from regular initial data in the Einstein—-Maxwell charged scalar field
system.

13/43



RETIRING THE THIRD LAW

Conjecture (The third law, BCH 73, Israel "86).

A subextremal black hole cannot become extremal in finite time by any continuous process, no
matter how idealized, in which the spacetime and matter fields remain regular and obey the
weak energy condition.

Theorem (K-Unger "22).

There exists a precisely defined process in which a subextremal black hole becomes extremal in
finite time, evolving from regular initial data in the Einstein—-Maxwell charged scalar field
system. In particular, the “third law of black hole thermodynamics” is false.
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ISRAEL’S ARGUMENT I

VOLUME 57, NUMBER 4 PHYSICAL REVIEW LETTERS

28 JULY 1986

Third Law of Black-Hole Dynamics: A Formulation and Proof

W. Israel®

Research Institute for Fundamental Physics, Yukawa Hall, Kyoto University, Kyoto 606, Japan
(Received 19 May 1986)
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ISRAEL’S ARGUMENT I

VOLUME 57, NUMBER 4 PHYSICAL REVIEW LETTERS 28 JULY 1986

Third Law of Black-Hole Dynamics: A Formulation and Proof
W. Israel®

Research Institute for Fundamental Physics, Yukawa Hall, Kyoto University, Kyoto 606, Japan
(Received 19 May 1986)

Outer
apparent

\ horizon

MATTER \ \\

Israel argues by contradiction. Assume:

» First incoming matter flux creates (dynamical) subextremal apparent horizon.

» Second matter flux pushes the horizon to become to extremal.
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ISRAEL'S ARGUMENT II

Outer
apparent
horizon

(1) Raychaudhuri: trapped surfaces persist in evolution.

(2) Extremal horizons: neighborhood is free of trapped surfaces.
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(1) Raychaudhuri: trapped surfaces persist in evolution.

(2) Extremal horizons: neighborhood is free of trapped surfaces.

(1) & (2) are in contradiction. = Horizon cannot be extremal!

Implicit assertion: regular solution = connected outer apparent horizon.

Infractions can
result from the absorption of infinitesimally thin, mas-
sive shells,’ which force the apparent horizon to jump
outward discontinuously;

SCh. J. Farrugia and P. Hajicek

However, outer apparent horizon can jump in smooth spacetimes.
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COUNTEREXAMPLE TO THE THIRD LAW
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> Tine-tuned Cauchy data for Einstein-Maxwell-charged scalar field on & = R3
which undergo gravitational collapse.
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> Tine-tuned Cauchy data for Einstein-Maxwell-charged scalar field on & = R3
which undergo gravitational collapse.

» Forms an exactly subextremal (Schwarzschild) “apparent horizon.”
» Forms an exactly extremal Reissner-Nordstrom event horizon later.

» Arbitrarily regular: Vk € N, there exists a ck example.
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Fine-tuned Cauchy data for Einstein-Maxwell-charged scalar field on > = R3

which undergo gravitational collapse.

Forms an exactly subextremal (Schwarzschild) “apparent horizon.”

Forms an exactly extremal Reissner-Nordstrom event horizon later.

Arbitrarily regular: Vk € N, there exists a ck example.

Dominant energy condition (= weak energy condition)

outermost isometric to extremal
apparent  Reissner—Nordstrom
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ISRAEL’S PAPER REINTERPRETED

i+
BH
0t >0
Kgq S

\ first extremal
sphere

Outermost apparent horizon becomes disconnected the instant the black hole becomes
extremal!
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ISRAEL’S PAPER REINTERPRETED

i+
BH
0t >0
Kgq S

\ first extremal
sphere

Outermost apparent horizon becomes disconnected the instant the black hole becomes
extremal!

This is a feature, not a glitch!
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INTERIOR STRUCTURE OF THIRD LAW VIOLATING SOLUTIONS

¢, trapped surfaces

untrapped surfaces

qg=¢/M

outermost apparent
horizon
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INTERIOR STRUCTURE OF THIRD LAW VIOLATING SOLUTIONS

» The outermost apparent horizon becomes disconnected, yet the spacetime is

regular.

¢, trapped surfaces

untrapped surfaces

qg=¢/M

outermost apparent
horizon

» Trapped surfaces persist for all time.
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SO WHERE DO THE TRAPPED SURFACES GO?

The geometry of a |q| = 1 — € example converges to a |q| = 1 example as e — 0.

trapped surfaces

O)}X

untrapped surfaces
until late advanced time

(= case —0)
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EVENT HORIZON JUMPING

outermost apparent
horizon
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EVENT HORIZON JUMPING

outermost apparent
horizon

Critical behavior: The event horizon jumps inwards the moment the exterior becomes
superextremal. There is no naked singularity.
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EVENT HORIZON JUMPING

outermost apparent
horizon

Critical behavior: The event horizon jumps inwards the moment the exterior becomes
superextremal. There is no naked singularity.

The event horizon jumping associated to extremal horizons and the stability of this
local critical behavior was conjectured by [DarErRMOS-HOLZEGEL-RODNIANSKI-TAYLOR "21].
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ASIDE: OVERCHARGING

Bardeen—Carter-Hawking:

Another reason for believing the third
law is that if one could reduce x to zero by a finite sequence of operations,
then presumably one could carry the process further, thereby creating
a naked singularity.

This has led to the paradigm of overcharging and overspinning.
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ASIDE: OVERCHARGING

Bardeen—Carter-Hawking:

Another reason for believing the third
law is that if one could reduce x to zero by a finite sequence of operations,
then presumably one could carry the process further, thereby creating
a naked singularity.

This has led to the paradigm of overcharging and overspinning.

» Such an attempt is a doomed endeavor.
» Overcharging has been definitively disproved in sph. symmetry [Kommewmi "13].

» Part of the spacetime is isometric to superextremal Reissner-Nordstrom #- there
exists a naked singularity!
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EINSTEIN-MAXWELL-CHARGED SCALAR FIELD SYSTEM

> Lorentzian manifold (M3+1, ¢)
» 2-form F = dA (electromagnetism)
» Charged (complex) scalar field ¢
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EINSTEIN-MAXWELL-CHARGED SCALAR FIELD SYSTEM

> Lorentzian manifold (M3+1, ¢)
» 2-form F = dA (electromagnetism)
» Charged (complex) scalar field ¢

Ruv(8) — 5R(8)guw =2 (TE“J‘ + TSR )
VHF, = 2¢Im(¢D, @)
§""DuDyop =0
Tiy =8 FavFau — F* Fapgu
T = Re(Du¢Dyd) — 38,w8* DadDsd

20/43



TOY MODEL: EINSTEIN-SCALAR FIELD IN SPHERICAL SYMMETRY

» M3+1 — QlJrl x §2
g = —Qudo 4 r’ge

» Q(u,v) > 0lapse, r(u,v) > 0 area-radius
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TOY MODEL: EINSTEIN-SCALAR FIELD IN SPHERICAL SYMMETRY
» M3+1 — QlJrl % SZ
g= —Q%dudo + 1’2852
» Q(u,v) > 0lapse, r(u,v) > 0 area-radius
» Wave equations

Do 7Bu¢8yr _ OutOyp
r r
2
by O Ourtur
4r r
2
8”81] log(Qz) _ Qﬁ + zaltravr
2r2 r2
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TOY MODEL: EINSTEIN-SCALAR FIELD IN SPHERICAL SYMMETRY
» M3+1 — QlJrl % SZ
g = —Qudo 4 r’ge

» Q(u,v) > 0lapse, r(u,v) > 0 area-radius

» Wave equations
_ OupOor  Ourbud
r

0uOvp =
r
2
0,87 — _& B OOyt
4r r
0?2 Oy 1Oyt
2\ ul Oy
0u0p log(Q°) = 27 2 2

» Raychaudhuri’s equations (constraints)
Our 7
8u (é) = *E(aud’)z

2
P (Q—:> = (@)

Hawking mass m = %(1 +4Q720,r0y1):

Bym = 2r7Q 72 (—8,1) (8v0)?
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MINKOWSKI TO SCHWARZSCHILD GLUING

In our disproof we use a technique to construct solutions called characteristic gluing.
See [ARETAKIS-CZIMEK-RODNIANSKI, CHRUSCIEL-CONG] for Einstein vacuum equations

radius ZM\

Goal:

Set up characteristic data such that radii and Hawking masses have a priori specified

values and ¢, 85,¢, Bf;qﬁ.
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Set up characteristic data such that radii and Hawking masses have a priori specified

values and ¢, 85,¢, 8,’;45.
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MINKOWSKI TO SCHWARZSCHILD GLUING

Theorem (K.-Unger "22).
Forany k € N, My > 0and 0 < R; < Ry, the Minkowski sphere of radius R; can be

characteristically glued to the Schwarzschild sphere with radius Ry and mass My to order o
within the Einstein-scalar field model in spherical symmetry.
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A FIRST APPROACH AND THE ISSUE OF TRANSVERSE DERIVATIVES

> Onvo € [0,1] use gauge 02 = 1 we impose —8,7(1) > 1 = |8vr|, Ar < 1 (short
pulse [CrRrisTODOULOU])

> Intermediate value thm: 3 amplitude of ¢ such that My = fol 212 (—8y7) (Bu)>dv

<
¥
2
Qo
&

Schwarzschild sphere
mass Mf
radius Ry

Minkowski sphere

“~ radius R;
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Schwarzschild sphere
mass Mf
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Minkowski sphere

“~ radius R;

This is not enough because:

» Transverse derivative 0, ¢ is transported and sourced by ¢ along outgoing cone:
Op(0up) = —0upOy logr — Opddy logr.

» Generic choice of profile can only satisfy either 9,¢(0) =0 or d,¢(1) = 0.

» However, gluing requires both and also higher transverse derivatives.

24 /43



IDEA OF THE PROOF: SCHWARZSCHILD

Schwarzschild sphere
mass Mf
radius Ry

Minkowski sphere

“— radius R;

» Scalar field ansatz ¢a (0) = 321 <jcpy1 0jxj(0), @€ Rk+1
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switches the sign of the scalar field.
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Schwarzschild sphere
mass Mf
radius Ry

Minkowski sphere

“— radius R;

» Scalar field ansatz ¢ (v) = Zl§j§k+1 ajxj(v), ae€ Rk+1
» Hawking mass condition My = fol 2r%(—8u1) (Bu)?dv is satisfied by o on a
topological k-sphere Mt C RF+1,

> The antipodal map « +— —a leaves geometric quantities invariant (r, Q%) but
switches the sign of the scalar field.

> Set 8upa(0) = - = 0o (0) =0, thenmap a — (Suda (1), ..., pa(1)) is odd.
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o mass My
radius Ry
Minkowski sphere

“— radius R;

» Scalar field ansatz ¢ (v) = Zl<j<k+1 ajxj(v), ae€ Rk+1

> Hawking mass condition My = fol 2r%(—8u1) (Bu)?dv is satisfied by o on a
topological k-sphere 9t C RF+1.

> The antipodal map « +— —a leaves geometric quantities invariant (r, Q%) but
switches the sign of the scalar field.

> Set 8upa(0) = - = 0o (0) =0, thenmap a — (Suda (1), ..., pa(1)) is odd.

» Borsuk-Ulam theorem: there exists ax such that

(9uda. (1), e, (1)) = 0.
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DISPROOF OF THE THIRD LAW

Schwarzschild to ERN,
gluing

Schwarzschild to Minkowski

gluing  gchwarzschild apparen
horizon

r>2

r=24¢

outgoing Schwarzschild cone

exact Schwarzschild region R

strip down to the center 1
strip down to the center 2

H* ends here

Poincaré inequality obstruction: 9ym ~ (faur)rz(&]qb)z but 8,Q ~ r2$dyp
= A short pulse cannot produce an extremal black hole.
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Beyond the disproof of the third law,
the gluing method allows us to construct further interesting behavior.
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BLACK HOLES WITHOUT TRAPPED SURFACES
Theorem (K.-Unger "22).

There exist black holes without trapped surfaces.

j—__
N regular
N

No trapped surfaces for |q| = 1.

Penrose’s theorem does not guarantee the stability of their black hole-ness.
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Theorem (K.-Unger "22).

There exist black holes without trapped surfaces.

j—__
N regular
N

No trapped surfaces for |q| = 1.

Penrose’s theorem does not guarantee the stability of their black hole-ness.

Such black holes could be natural candidates for critical solutions!
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critical solution W

Minkowski space

dispersive solutions

Numerics for sph. symm. Einstein-scalar field: ¥, leads to a naked singularity
[CHOPTUIK "93, ...]

Also numerics suggesting star-like objects as ¥ _ for Einstein-Klein-Gordon/Vlasov

[BRADY, CHAMBERS, GONCALVES, REIN, RENDALL, SCHAEFFER, ... ]

It is an open problem to make any of these numerics rigorous!
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THEOREM: EXTREMAL CRITICAL COLLAPSE

We consider self-gravitating charged plasma: Einstein-Maxwell-Vlasov system

Ruw — %Rg‘w =2 <gaﬁFaVF5u — %FaﬁFaBg;w + fP}Q‘ pﬂp,,fd,u}:‘> ,
U = p
pt axuf Faﬁp P apuf = —eFHqp® apuf
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Ruw — %Rg‘w =2 <gaﬁFaVF5u — %FaﬁFaBg;w + fP}Q‘ pﬂp,,fd,u}:‘> ,
U = p
pt axuf Faﬁp P apuf = —eFHqp® apuf

Theorem (K.-Unger "24).

There exists a smooth 1-parameter family of solutions {Dx} xe[o,1] and a critical value
A« € (0,1) such that:

» If0 < X\ < A, the solution disperses to Minkowski space and no black hole forms.
» If X = Xy, an extremal black hole forms.
> If A« < X <1, asubextremal black hole forms.

There exist extremal black holes on the black hole formation threshold!

We call this phenomenon Extremal Critical Collapse.
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PENROSE DIAGRAM: EXTREMAL CRITICAL COLLAPSE

A < As: dispersion
i+

Minkowski
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PENROSE DIAGRAM: EXTREMAL CRITICAL COLLAPSE

A < As: dispersion A = \.: extremal BH A > )\, subextremal BH
ot
i

N no trapped N trapped
NG region N region
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CARTOON PICTURE OF MODULI SPACE

naked singularity

Minkowski space

dispersive solutions

extremal black hole
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EXTREMAL CRITICAL COLLAPSE: 1 — ZTm ALONG LATE INGOING CONE
In spherical symmetry: trapped sphere if and only if 1 — sz <0.

A = 0: Minkowski

1— 2m

‘ r
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In spherical symmetry: trapped sphere if and only if 1 — @ <0.

A > ). subextremal black hole

34/43



ASPECTS ABOUT THE PROOF

Consider a singular toy model: Einstein-Maxwell-charged null dust

R,u,u - %Rg,uu 2 (T;I;],,M + T;U/) )
VeF 0 = epky,
kY, k= e Pk,

V/J«(pk“u) = 09
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ASPECTS ABOUT THE PROOF

Consider a singular toy model: Einstein-Maxwell-charged null dust

R,u,u - %Rg,uv =2 (TTEVM + T;U/) )
Vo = epky,
RV, k= PP R,
V/J«(pk“u) = 09

The system is not well-posed but an explicit, singular solution can be written down in
terms of the ingoing charged Vaidya solution (Ori '91) and “free” functions w;,, Qjy

. ) 2
with @, > Oand O, > 0 for D(V,r) = 1 — 22u) 4 CuV),
Gin[@in, Qi) = —D(V,7) dV? + 2dVdr + r?y,

F=-9 v nar,
T

. . . -1
k= [4 (L'Um _ QinQin) (=0,), p= (Qin)2 <m"m _ QinQin)

=7 2,2
Qin r e2r r
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ASPECTS ABOUT THE PROOF

Consider a singular toy model: Einstein-Maxwell-charged null dust

Ry, — %ng = (CTLIJEIII\/I + T 5
Vo = epky,
kYN kH = eFH Y,
V/J«(pk“u) = 09

The system is not well-posed but an explicit, singular solution can be written down in
terms of the ingoing charged Vaidya solution (Ori '91) and “free” functions w;,, Qjy

. 2
with @, > Oand O, > 0 for D(V,r) = 1 — 22u) 4 CuV),

Gin[@in, Qin) = —D(V,7) dV? + 2dVdr + 1%y,
F= 7Qm dV Ndr,
. !
k= Q (wm _ erQm> (_ar)’ p= ((321:2 (win _ Qu;Qm)
Bounce radius: r, = QI"Q'"
Win

Note: Ty = pkuk, violates null energy condition if r < 7.

Ori’s interpretation: Once an ingoing fluid trajectory hits the bounce hypersurface
Yy = {r = rp}, it has to change direction from ingoing to outgoing.
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SPACELIKE BOUNCE HYPERSURFACE

///é/

Yy := {r = r,} is spacelike = Explicit surgery with an outgoing Vaidya solution is
possible such that second fundamental form is continuous. (Ori '91)

However, solution is still singular across ¥;:

p&L>®, N:=pk¢C

Yy := {r = rp } being spacelike is a teleological assumption!
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EXTREMAL CRITICAL COLLAPSE IN NULL DUST MODEL

Theorem (K.-Unger "24).

The charged null dust model exhibits extremal critical collapse.

A < A, dispersion

A = \,.: extremal BH

A > \,: subextremal BH

it

Minkowski

\ no trapped
N region
NEN 8

O'/ Minkowski

i

trapped
region

" Minkowski
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EXTREMAL CRITICAL COLLAPSE IN NULL DUST MODEL

Theorem (K.-Unger "24).

The charged null dust model exhibits extremal critical collapse.

A < A, dispersion A = \,.: extremal BH A > \,: subextremal BH
,j+
Q\ - no trapped 5 trapped
> NG regi NG regl
N \\ &x Ie gl()ll \\ )}X re gl()ll

" Minkowski & Minkowski & Minkowski

i i i
Proof idea: Instead of prescribing free function @, Q as in Ori’s model, we directly
prescribe the geometry of X;: find solutions to a system of ODEs and differential
inequalities.
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SMOOTH EXTREMAL CRITICAL COLLAPSE: VLASOV CASE

N no trapped
N region
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CONSTRUCTION OF BOUNCING CHARGED VLASOV BEAMS

A want this region to look like
> a desingularized bouncing
AN charged null dust solution
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CONSTRUCTION OF BOUNCING CHARGED VLASOV BEAMS

approximate spacelike
bounce hypersurface

want this region to look like
a desingularized bouncing
charged null dust solution

W%
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CONSTRUCTION OF BOUNCING CHARGED VLASOV BEAMS

time symmetric!

particles have conserved
angular momentum ¢? = rzg(p, p)

charged null dust:
monokinetic Maxwell-Vlasov with ¢ = 0

bouncing charged null dust hasp = 0
along the bounce hypersurface

initial data fo needs tohavep =~ { ~ e < 1
to behave like dust

JM| > 1= fy=e 3 (f - (p)ase — 0)
dust approximation requires a singular ansatz for f;

fo is given by an explicit formula

Difficulty: Instability of em-geodesic flow at the inner edge of the beam, where charge

repulsion is arbitrarily small.
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CONSTRUCTION OF BOUNCING CHARGED VLASOV BEAMS

weak aux beam
L=~1
AQ=n

strong main beam
I=e
AQ~M

the most important feature to resolve is the
outward acceleration near the bounce hypersurface

we employ a weak “auxiliary beam” to impart charge
0 < € € 71 € 1 = stabilizes the main beam

the auxiliary beam bounces due to
angular momentum repulsion, not charge

null structure: T#*, T* better in € than T%
monotonicity: 9,Q <0,3,Q >0

dispersion proved using energy estimates
at a late time 0 > 1

hierarchy of scales 0 < m < e K n K 71 « 1
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CONSTRUCTION OF BOUNCING CHARGED VLASOV BEAMS

the most important feature to resolve is the

weak aux beam .
outward acceleration near the bounce hypersurface

=1
AQ~1n sl "o
we employ a weak “auxiliary beam” to impart charge
0 < € € 71 € 1 = stabilizes the main beam
the auxiliary beam bounces due to
angular momentum repulsion, not charge
null structure: T#*, T* better in € than T%
monotonicity: 9,Q <0,3,Q >0
strong main beam dispersion proved using energy estimates
lre at alate time 0 > 1
AQ~M

hierarchy of scales 0 < m < e K n K 71 « 1

For Vlasov we make fundamental use of the repulsive effects of
charge and angular momentum.
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STABILITY OF EXTREMAL CRITICAL COLLAPSE
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Extremal critical collapse is a stable phenomenon.
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STABILITY OF EXTREMAL CRITICAL COLLAPSE

Conjecture.
Extremal critical collapse is a stable phenomenon.

naked singularity

owski space

dispersive solutions

asymptotically extremal black holes

» This is also a non-trivial statement about the interiors of black holes.
» Further difficulty: Aretakis instability associated to extremal horizons

» Theorem. Extremal Reissner-Nordstrém is codimension 1 stable.
[ANGELOPOULOS-K.-UNGER ’24]
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THE VACUUM CASE: THE THIRD LAW

Far less is known in vacuum and even the third law has not yet been disproved.
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THE VACUUM CASE: THE THIRD LAW

Far less is known in vacuum and even the third law has not yet been disproved.

Conjecture.
There exist Cauchy data for the Einstein vacuum equations

Ry =0
which undergo gravitational collapse and form an exactly Schwarzschild apparent horizon, only

for the spacetime to form an exactly extremal Kerr event horizon at a later advanced time. In
particular, already in vacuum, the “third law of black hole thermodynamics” is false.
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THE VERY SLOWLY ROTATING CASE

Theorem (K.-Unger, "23).
Forany 0 < |a| < M, there exist Cauchy data for the Einstein vacuum equations

Ruw =0

which undergo gravitational collapse and form an exactly Kerr event horizon at a finite
advanced time with specific angular momentum a and mass M.
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THE VACUUM CASE: EXTREMAL CRITICAL COLLAPSE

In principle, however, extremal critical collapse, its stability, and the revised picture of
moduli space
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THE VACUUM CASE: EXTREMAL CRITICAL COLLAPSE

In principle, however, extremal critical collapse, its stability, and the revised picture of
moduli space can be conjectured to also hold true in vacuum with extremal
Reissner-Nordstrom replaced by extremal Kerr.

However, this is a very difficult open problem and also relates to understanding

» the codimension stability and stability of extremal and near-extremal black holes
[DAFERMOS-HOLZEGEL-RODNIANSKI-TAYLOR]

» the nonlinear ramifications of horizon instabilities associated to extremal Kerr
[ARETAKIS, GAJIC].

» See essay by M. Dafermos on: “The stability problem for extremal black holes.”
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naked singularity

Minkowski space

dispersive solutions

asymptotically extremal black holes

Thank you!
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