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Introduction

Riemannian positive mass theorem (PMT):

Let Mn, 3 ≤ n < 8 be a smooth manifold. Let g be a complete
asymptotically flat C∞ metric. If R[g] ≥ 0, then m[g] ≥ 0 and
m[g] = 0 iff (M, g) is isometric to the Euclidean space (Rn, δ).

m[g] = lim
r→∞

1

2(n− 1)ωn−1

∫
Sr

n∑
i,j=1

(∂igij − ∂jgii)νjdS

First proved by [SY79a] for n < 8.

[Wit81] extended the result for all n for spin manifolds.

Why Low-regularity?

”Synthetic” lower bounds scalar curvature (Alexandrov/RCD Spaces)

Contains quite some interesting analysis: Regularisation of distribu-
tional curvature, Friedrichs-type lemma, conformal method, Ricci-
flow, etc.
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Introduction
Low-regularity PMT?

g ∈W 1,n
loc ∩ C0

Riem[g] ≈ ∂Γ︸︷︷︸
∈D′(M)

+ Γ · Γ︸︷︷︸
∈Ln/2

loc (M)

and R[g] ∈ D′(M).

Pointwise lower bounds are not well defined, however, we can
replace by distributional lower bounds.

⟨R[g], φ⟩ ≥ 0 ∀φ ≥ 0 ∈ D(M)

ADM-mass is not well defined since ∂g ∈ Ln(M).

m[g] = lim
r→∞

1

2(n− 1)ωn−1

∫
Sr

n∑
i,j=1

(∂igij − ∂jgii)νjdS

(Usually, it is assumed that the metric is smooth away from a singular
subset.)
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Introduction

Low-regularity PMT Literature
Let Σ and K be a hypersurface and a compact set on M , respectively.

g ∈ C0,1(M) and g ∈ C∞(M\Σ) [Mia02; MS12]

g ∈W
2,n/2
loc (M) and g ∈ C∞(M\K) [GT14]

g ∈ C0(M) ∩W 1,n
loc (M) (spin) [LL15]

Many other contributions: [JSZ22; Lee12; ST02; Li20]...

Present work

g ∈ C0(M) ∩W 1,n
loc (M) and g ∈ C∞(M\K) (non-spin)
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Low-regularity PMT: Sketch of the proof

Theorem 1.1 (Nonnegativity)

Let Mn, 3 ≤ n < 8 be a smooth manifold. Let g be a complete asymp-
totically flat C0 ∩W 1,n

loc metric and g ∈ C∞(M\K). If R[g] ≥ 0 in D′

sense, then m[g] ≥ 0.

Sketch of the proof:

1 Find {gε}ε>0 smooth such that gε → g in W 1,n
loc and uniformly in

compact sets and g|M\Kε
= gε|M\Kε

for some compact set Kε

2 ...

3 Find conformal factor uε s.t R[g̃ε] ≥ 0, where g̃ε = u
4

n−2
ε gε

4 m[g̃ε] ≥ 0 (smooth PMT) and m[g̃ε] → m[g] =⇒ m[g] ≥ 0

Main challenge:
Step (3): Solve a PDE that only has solution if ∥R[gε]−∥Ln/2(M) is suffi-
ciently small. However, we only have R[gε] → R[g] in D′
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Low-regularity PMT: Step 1 - Regularisation

Chartwise regularisation of metric by convolution on a compact set K

gε := g ⋆M ρε := ηKcg +

m∑
i=1

χi(ψi)
−1
∗

[(
(ψi)∗(ηig)

)
∗ ρε

]

Lemma 1.1 ([GT14])

There exist smooth metrics gε and a compact set Kε ⊂M with

1 gε → g in W 1,n
loc (M) and locally uniformly as ε→ 0

2 gε ≡ g on M\Kε

In particular, Kε is the closure of the ε-neighborhood of K
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Low-regularity PMT: Step 2 - Scalar curvature
Problem: R[gε] → R[g] only in D′

⇝ R[g] ≥ 0 in D′ doesn’t help to control ∥R[gε]−∥Ln
2 (M)

Solution: compatibility of distinct regularisations

R[gε]−R[g] ⋆M ρε︸ ︷︷ ︸
≥0

→ 0 in L
n/2
loc (g ∈W 1,n

loc ∩ C0)

Key Idea: Friedrichs-type Lemma
In coordinates we denote gε := (ψ∗gε), the relevant terms are

gijε g
ks
ε︸ ︷︷ ︸

=:aε

(∂sglm)︸ ︷︷ ︸
=:f

∗ρε − (gijgks︸ ︷︷ ︸
=:a

∂sglm︸ ︷︷ ︸
=:f

) ∗ ρε → 0 in W
1,n

2
loc

Prove aεfε − (af)ε → 0 in W
1,n

2
loc

a ∈W 1,n
loc , f ∈ Ln

loc and C∞ ∋ aε → a in W 1,n
loc , fε := f ∗ ρε

If R[g] ≥ 0 distributionally and g ∈ C∞(M\K), then

∥R[gε]−∥Ln/2(M) ≤ 2∥R[gε]−R[g] ⋆M ρε∥Ln/2(Kε)
ε→0−→ 0
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Low-regularity PMT: Step 3 - Conformal Method

If ∥R[gε]−∥Ln/2(M) is sufficiently small, then the following system{
cn∆gεuε +R[gε]−uε = 0(∗)

lim
x→∞

uε = 1

has a C2 positive solution uε on M [SY79b; Mia02].

Then, g̃ε = u
4

n−2
ε gε has scalar curvature given by

R[g̃ε] = u
−n+2

n−2
ε (−cn∆gεuε +R[gε]uε)

(∗)
= u

−n+2
n−2

ε

(
R[gε]+uε

)
≥ 0
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Low-regularity PMT: Step 4 - Convergence

R[g̃ε] ≥ 0 and smooth PMT =⇒ m[g̃ε] ≥ 0

The masses of gε and g̃ε are related by

m[g̃ε] = m[gε] + 2Aε

(2− n)ωn−1Aε =

∫
M

|∇gεuε|2 −
1

cn
R[gε]−u

2
εdµgε

Standard analysis and R[gε]− → 0 in Ln/2(M) yields Aε → 0

Since m[gε] = m[g], then

lim
ε→0

m[g̃ε]= lim
ε→0

m[gε]=m[g]

m[g̃ε] ≥ 0 and m[g̃ε] → m[g] =⇒ m[g] ≥ 0
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