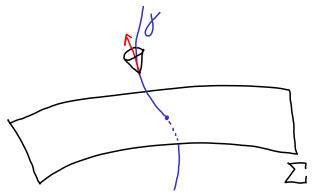
Reconstructing the Past with the Cosmological Time Function

Leonardo García-Heveling (collab. with Gregory J. Galloway)

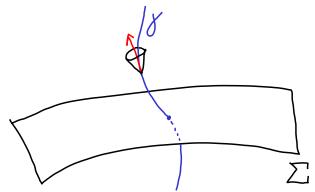
University of Hamburg

15th Central European Relativity Seminar Nijmegen, 23 January 2025

 A subset Σ ⊂ M in a spacetime (M, g) is called a <u>Cauchy</u> <u>hypersurface</u> if every inextendible causal curve intersects Σ exactly once.



 A subset Σ ⊂ M in a spacetime (M, g) is called a <u>Cauchy</u> <u>hypersurface</u> if every inextendible causal curve intersects Σ exactly once.



Used to specify initial data for Einstein equations

- A subset Σ ⊂ M in a spacetime (M, g) is called a <u>Cauchy</u> <u>hypersurface</u> if every inextendible causal curve intersects Σ exactly once.
- A continuous function $\tau \colon M \to \mathbb{R}$ is called <u>time function</u> if $\tau \circ \gamma$ is strictly increasing for every future-directed causal curve γ

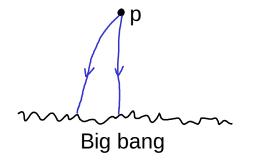
- A subset Σ ⊂ M in a spacetime (M, g) is called a <u>Cauchy</u> <u>hypersurface</u> if every inextendible causal curve intersects Σ exactly once.
- A continuous function $\tau \colon M \to \mathbb{R}$ is called <u>time function</u> if $\tau \circ \gamma$ is strictly increasing for every future-directed causal curve γ

Theorem (Geroch 1970, Bernal–Sánchez 2005) (*M*, *g*) is globally hyperbolic iff there exists a time function $\tau: M \to \mathbb{R}$ such that $\Sigma_t := \{\tau = t\}$ is a Cauchy hypersurface for every $t \in \mathbb{R}$.

Cosmological time function

 $\tau(p) := \sup\{L_g(\gamma) \mid \gamma \text{ past-directed causal starting at } p\}$ where $L_g(\gamma)$ is the length (=proper time). Call τ regular if: $\tau(p) < \infty$ for all $p \in M$

2 $au \circ \gamma
ightarrow$ 0 along every past-inextendible causal curve γ



Cosmological time function

 $\tau(p) := \sup\{L_g(\gamma) \mid \gamma \text{ past-directed causal starting at } p\}$

where
$$L_g(\gamma)$$
 is the length (=proper time). Call τ regular if:

•
$$au({ extsf{p}}) < \infty$$
 for all ${ extsf{p}} \in { extsf{M}}$

2) $\tau \circ \gamma \rightarrow 0$ along every past-inextendible causal curve γ

Theorem (Andersson–Galloway–Howard 1999)

If τ is regular cosmological time function then:

- $\textcircled{0} \ \tau \text{ is indeed a time function}$
- **2** (M,g) is globally hyperbolic
- For every p, there exists a past-directed geodesic γ starting at p with L_g(γ) = τ(p)

au regular cosmological time \implies (M,g) globally hyperbolic \implies there is a Cauchy time function

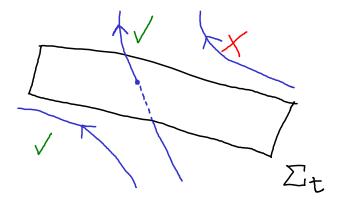
But is τ itself a Cauchy time function?

4/7

au regular cosmological time \implies (M,g) globally hyperbolic \implies there is a Cauchy time function

But is au itself a Cauchy time function? No $\ddot{\neg}$

In general, Σ_t is only a future Cauchy hypersurface (for all t > 0)



Theorem (Galloway–G.H. 2024)

Suppose (M, g)

- has regular cosmological time function $\tau \colon M \to \mathbb{R}_{>0}$
- Is future timelike geodesically complete
- Sontains a compact Cauchy hypersurface

Then, for every t > 0, the level set $\{\tau = t\}$ is a Cauchy hypersurface.

5/7

Theorem (Galloway–G.H. 2024)

Suppose (M, g)

- has regular cosmological time function $\tau \colon M \to \mathbb{R}_{>0}$
- is future timelike geodesically complete
- Sontains a compact Cauchy hypersurface

Then, for every t > 0, the level set $\{\tau = t\}$ is a Cauchy hypersurface.

Can also substitute 3 by

bas spacelike future causal boundary

Theorem (Galloway–G.H. 2024)

Suppose (M, g)

- has regular cosmological time function $\tau \colon M \to \mathbb{R}_{>0}$
- is future timelike geodesically complete
- Sontains a compact Cauchy hypersurface

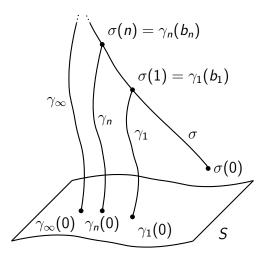
Then, for every t > 0, the level set $\{\tau = t\}$ is a Cauchy hypersurface.

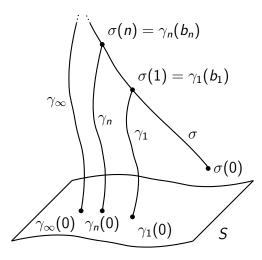
Can also substitute 3 by

bas spacelike future causal boundary

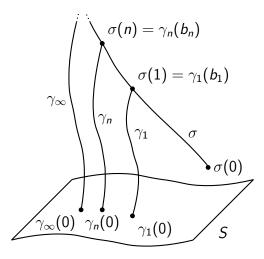
Counterexample if 2 not satisfied:





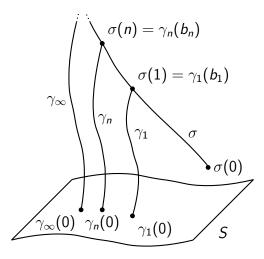


For every n, $\exists \gamma_n$ such that $\tau(\sigma(n)) = L(\gamma_n)$



For every n, $\exists \gamma_n$ such that $\tau(\sigma(n)) = L(\gamma_n)$

Limit curve theorem: $\gamma_n \rightarrow \gamma_\infty$ with $L(\gamma_\infty) = \lim L(\gamma_n) < \infty$



For every n, $\exists \gamma_n$ such that $\tau(\sigma(n)) = L(\gamma_n)$

Limit curve theorem: $\gamma_n \rightarrow \gamma_\infty$ with $L(\gamma_\infty) = \lim L(\gamma_n) < \infty$

Geodesic completeness $\implies L(\gamma_{\infty}) = \infty \quad \notin$

Conclusion

Open questions:

- Is compact Cauchy hypersurface necessary?
- What about looking only at small times?

Applications:

- Null distance (Sormani–Vega 2015,...)
- Isometry group is compact (in progress with A. Zeghib)

Conclusion

Open questions:

- Is compact Cauchy hypersurface necessary?
- What about looking only at small times?

Applications:

- Null distance (Sormani–Vega 2015,...)
- Isometry group is compact (in progress with A. Zeghib)

Thank you for listening!

7/7