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LISA - Mission summary

Science Objectives

= Study the formation and evolution of compact binary stars and the structure of the Milky Way Galaxy
= Trace the origins, growth and merger histories of massive Black Holes across cosmic epochs

= Probe the properties and immediate environments of Black Holes in the local Universe using extreme mass-ratio
inspirals and intermediate mass-ratio inspirals

= Understand the astrophysics of stellar-mass Black Holes A |LNas

= Explore the fundamental nature of gravity and Black Holes lisa

= Probe the rate of expansion of the Universe with standard sirens

= Understand stochastic gravitational wave backgrounds and their implications
for the early Universe and TeV-scale particle physics

» Search for gravitational wave bursts and unforeseen sources




Gravitational waveform signal from inspiral binaries
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Ringdown: Quasi-normal modes
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Ringdown: Quasi-normal modes

Ringdown signal: superposition of
complex frequencies
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Ringdown: Quasi-normal modes

Ringdown signal: superposition of
complex frequencies
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Black-hole spectroscopy

Main point: Each wy,,,, depend only on the Kerr parameters!

Wemn = Wﬁmn(Mﬂ af)

The detection of a single QNM mode (for example the (¢, m,n) =
(2,2,0)) gives an estimate of (My,ay)!

— Black-hole spectroscopy: the detection of multiple QNMs
can be used to test if the remnant is a Kerr black-hole and the no-
hair theorem.



QNM data analysis — first-order
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Quasi-normal modes at second-order
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Quasi-normal modes at second-order
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Quasi-normal modes at second-order
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Can we make this more precise?
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Until recently, assumed:
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Issue: different papers find different values of this ratio R!?
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related to odd/even mode
amplitude, C, /C,}



QQNM dependence on linear mode parity
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QQNM dependence on linear mode parity
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Conclusion

» With future space-based GW detectors, such as LISA, we can
explore yet uncharted territories.

» The black-hole spectroscopy program aims at establishing if
the merger remnant is Kerr and test the no-hair theorem.

» Conclusive evidence shows that precise measurement of the
waveform ringdown must account for non-linear effect.

> We showed the second-order contribution depends on the
ratio of even to odd linear parity modes.

» This dependence has been historically overlooked and can be
used to obtain better error estimates of the ratio of
second-order to parent linear-order modes.

Future directions:
» Generalise the formalism to Kerr.
» Investigate second-order effects at the horizon

» Investigate branch cut contribution.



