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The gravitational-wave spectrum
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LISA - Definition Study Report
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LISA - Mission summary
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Gravitational waveform signal from inspiral binaries

Credit: Marc Favata/SXS/Kip Thorne
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Ringdown: Quasi-normal modes
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Ringdown: Quasi-normal modes

Ringdown signal: superposition of
complex frequencies

h(t) =

∞∑
k=0

Ake
−iωkt

but from perturbation theory:
ωk = ωQNM

ℓmn (quasi-normal modes)

=⇒ h(t) =

∞∑
ℓmn

Aℓmne
−iωℓmnt
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Black-hole spectroscopy

Main point: Each ωℓmn depend only on the Kerr parameters!

ωℓmn = ωℓmn(Mf , af )

The detection of a single QNM mode (for example the (ℓ,m, n) =
(2, 2, 0)) gives an estimate of (Mf , af )!

=⇒ Black-hole spectroscopy: the detection of multiple QNMs
can be used to test if the remnant is a Kerr black-hole and the no-
hair theorem.
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QNM data analysis — first-order

When does ringdown start?

◦ some ∝ M after the peak?

◦ Which peak? h+? h×? Ψ4?

Other issues

◦ QNMs form an incomplete set!

◦ QNM frequencies are unstable:
spectral instability

◦ Growing evidence of detectable
non-linear effects
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Quasi-normal modes at second-order

Use Teukolsky equation.
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=⇒ R is a constant: it only depends on Mf and af

Issue: different papers find different values of this ratio R!?
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QQNM dependence on linear mode parity
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Conclusion

▶ With future space-based GW detectors, such as LISA, we can
explore yet uncharted territories.

▶ The black-hole spectroscopy program aims at establishing if
the merger remnant is Kerr and test the no-hair theorem.

▶ Conclusive evidence shows that precise measurement of the
waveform ringdown must account for non-linear effect.

▶ We showed the second-order contribution depends on the
ratio of even to odd linear parity modes.

▶ This dependence has been historically overlooked and can be
used to obtain better error estimates of the ratio of
second-order to parent linear-order modes.

Future directions:

▶ Generalise the formalism to Kerr.

▶ Investigate second-order effects at the horizon

▶ Investigate branch cut contribution.


