Non-linearities after the collision of two black holes

Béatrice Bonga - 24 January 2025

[Khera, Ribes Metidieri, BB, Jiménez Forteza, Krishnan, Poisson, Pook-Kolb, Schnetter, Yang, PRL, arXiv:2306/11142 + Bourg, Panoso Macedo, Spiers, Leather, BB, Pound, arXiv:2405.10270, PRL]

Gravitational waves make possible

2)

1) Test of gravity in the **strong & dynamical** regime

Gravitational waves from black hole mergers

Quasi-normal modes

Mathematical description

l = 2, 3, ...

-l < m < l

 $n = 0, 1, 2, \dots$

$$\omega_{lmn} = \omega_{lmn}^{R} + i \, \omega_{lmn}^{I} = 2\pi f_{lmn} + \frac{i}{\tau_{lmn}}$$
Depends on three integers:

$$l = 2.2$$
Damping time

\rightarrow Black hole spectroscopy!

Going beyond linear order...

	Linear order	
Frequency	$\omega_{nlm}^{(1)}$	
Phase	$\phi_{nlm}^{(1)}$ data analysis:	
Amplitude	$\mathcal{A}_{nlm}^{(1)}$ free parameters	

	Linear order	Second order	
Frequency	$\omega_{nlm}^{(1)}$	$\omega_{NLM}^{(2)} = \omega_{nlm}^{(1)} + \omega_{n'l'm'}^{(1)} \qquad \begin{array}{c} \text{``quadratic''} \\ \text{frequencies are} \\ \text{fingerprinted} \end{array}$	
Phase	$\phi_{nlm}^{(1)}$ data analysis:	$\phi_{NLM}^{(2)}=\phi_{nlm}^{(1)}\pm\phi_{n'l'm'}^{(1)}+d_{nlm imes n'l'm'}^{NLM}(M,a)$	
Amplitude	$\mathcal{A}_{nlm}^{(1)} \int free \text{ parameters}$	$\mathcal{A}_{nlm imes n'l'm'}^{(2),NLM}= oldsymbol{c}_{nlm imes n'l'm'}^{NLM}(M,a) \mathcal{A}_{nlm}^{(1)} \mathcal{A}_{n'l'm'}^{(1)}$	

Non-linear model preferred @ infinity

Implications for observations:

$$h^{obs} = h^{linear} + h^{non-linear}$$

but frequencies are "finger-printed" with an order in perturbation theory!

Horizon should be more non-linear, but not too crazy → easier to find

quadratic QNMs

Horizon is strong field regime →hopeless to try to find any QNMs

Why care about the horizon?

are interesting because of their origin!

Black hole tomography [see presentation Ariadna Ribes Metidieri]

Two sets of simulations using the Einstein Toolkit

Shear at the horizon

Disclaimer: We simply use the simulation time.

Same issue at infinity!

Ringdown: Mass changes $\leq 1 \%$

Ne take
$$t_{ringdown} = 8.2 M$$

Two sets of simulations using the Einstein Toolkit

Mismatch after fixing ω_{200} and ω_{200}

Mismatch after fixing ω_{200} and ω_{201}

Stability amplitude

Amplitude relation

Amplitude relation is not initial data-independent!

The ratio of odd/even parity linear parent modes is also important [see presentation Patrick Bourg]

Amplitude relation explained?

Mode	$\omega_{ln imes l'n'}$	Boosted (α)	Unboosted (α)
l=2	$\omega_{20 \times 20}$	$1.51_{-0.04}^{+0.15}$	$6.21_{-1.15}^{+0.15}$
l = 4	$\omega_{20 \times 20}$	$0.73\substack{+0.06 \\ -0.33}$	2 - 1
	$\omega_{20 \times 40}$	$2.6\substack{+0.26 \\ -0.26}$	—
l = 6 *	$\omega_{20 \times 40}$	$1.78_{-0.74}^{0.53}$	
	$\omega_{20 imes 60}$	$2.52^{+1.29}_{-0.59}$	-
	$\omega_{20 \times 40}$	$1.78\substack{+0.44\\-0.65}$	-
	$\omega_{40 imes 40}$	$2.82^{+1.5}_{-0.62}$	

Conclusion

- ★ Quadratic QNMs fit the shear (and multipole) data at the horizon better than models with overtones
 - Iower mismatch
 - more stable amplitudes wrt changes in starting time
 - closer to the optimal frequency
 - amplitude relation is satisfied
- ★ Some of the same (quadratic) modes found at horizon and infinity
- ★ Observations of quadratic modes very likely with ET & LISA, so the future is bright!

Thanks for listening

