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Historical Background

Hermann Minkowski in his work
’Volumen und Oberflächen’ from 1903
proved two inequalities for convex
bodies in n = 3 dimensions.

Theorem

Let K1 be a convex body a and K2 a ball of radius 1. Denote by V0 the
volume, 3V1 the surface area, and 3V2 the integral of mean curvature of
K1 and denote by V3 = 4π/3 the volume of the unit ball in three
dimensions, then

V 2
1 ≥ V0V2 and V 2

2 ≥ V1V3,

with equality if and only if K1 is a ball b.

aCompact convex set with non-empty interior.
bThis is the rigidity case.
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Understanding the Minkowski Inequality

V 2
1 ≥ V0V2 and V 2

2 ≥ V1V3 are now known as Minkowski inequalities
in convex geometry.

When we talk about the Minkowski inequality we will exclusively refer
to the second one V 2

2 ≥ V1V3.

This Minkowski inequality asserts

Among all convex bodies with the same surface area, balls alone
minimize the integral of mean curvature.
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Generalizing to higher dimensions

This early version of the Minkowski inequality for n = 3 can be
directly generalized to higher dimensions n ≥ 3.

In modern notation the Minkowski inequality reads:

Theorem (Minkowski Inequality)

If Ω ⋐ Rn with n ≥ 3 is a convex domain with smooth, boundary and H
the mean curvature of ∂Ω computed with respect to the outward unit
normal, then (

|Sn−1|
|∂Ω|

)1/(n−1)

≤
 
∂Ω

H

n − 1
dσ

with equality if and only if Ω is a ball.

Remark:
ffl
E f dµ = 1

µ(E)

´
E f dµ = ”average of f over set E”.
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On the generalization to non-convex domains

Natural Question: Does the Minkowski Inequality hold true for larger
classes of domains than just for the convex one?

Answer: Yes!

Using the the method of smooth Inverse Mean Curvature Flow
(IMCF)1 Guan-Li ’09 based on results from Gerhardt 1990, and
Urbars 1990 extended it to the family of starshaped domains with
strictly mean-convex boundary

Using the method of Optimal Transport Qiu ’15 based on
Chang-Wang ’13 extended it to bounded open sets with smooth
boundary.

1A geometric evolution equation for submanifolds.
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Application of the Minkowski inequality

Minkowski inequality has been proven by Wei ’17 for Schwarzschild
spacetime using IMCF.

and by Brendle, Hung, and Wang for anti-de-Sitter-Schwarzschild
manifolds also using IMCF.

Minkowski inequality has also been proven by McCormick ’18 for
asymptotically flat static manifolds.

Harvie-Wang ’24 prove a black hole uniqueness theorem based on the
works of McCormick using the Minkowski inequality.

Florian Babisch (Tübingen) New proof of the Minkowski inequality January 22, 2025 9 / 25



Application of the Minkowski inequality

Minkowski inequality has been proven by Wei ’17 for Schwarzschild
spacetime using IMCF.

and by Brendle, Hung, and Wang for anti-de-Sitter-Schwarzschild
manifolds also using IMCF.

Minkowski inequality has also been proven by McCormick ’18 for
asymptotically flat static manifolds.

Harvie-Wang ’24 prove a black hole uniqueness theorem based on the
works of McCormick using the Minkowski inequality.

Florian Babisch (Tübingen) New proof of the Minkowski inequality January 22, 2025 9 / 25



Application of the Minkowski inequality

Minkowski inequality has been proven by Wei ’17 for Schwarzschild
spacetime using IMCF.

and by Brendle, Hung, and Wang for anti-de-Sitter-Schwarzschild
manifolds also using IMCF.

Minkowski inequality has also been proven by McCormick ’18 for
asymptotically flat static manifolds.

Harvie-Wang ’24 prove a black hole uniqueness theorem based on the
works of McCormick using the Minkowski inequality.
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The Lp-Minkowski Inequality

One generalization of the Minkowski inequality is:

Theorem (Lp-Minkowski Inequality, Agostiniani–Fogagnolo–Mazzieri
’22)

Let Ω ⊂ Rn be an open bounded set with smooth (connected) boundary.
Then, for every 1 < p < n, the following inequality holds

Cp(Ω)
n−p−1
n−p ≤ 1

|Sn−1|

ˆ
∂Ω

∣∣∣∣ H

n − 1

∣∣∣∣pdσ.
Here, Cp(Ω) is the normalized p-capacity of Ω and H is the mean
curvature of ∂Ω computed with respect to the outward unit normal.
Moreover, equality holds iff Ω is a ball.

Cp(Ω) = inf

{(
p − 1

n − p

)p−1 1

|Sn−1|

ˆ
Rn

|Dv |pdµ
∣∣∣∣ v ∈ C∞

0 (Rn), v ≥ 1 on Ω

}
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Finding the extended Minkowski inequality

Letting p → 1+ in the Lp-Minkowski inequality and using that

lim
p→1+

Cp(Ω)
n−p−1
n−p =

(
|∂Ω∗|
|Sn−1|

) n−2
n−1

holds, we find
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Extended Minkowski Inequality

Theorem (Extended Minkowski inequality,
Agostiniani–Fogagnolo–Mazzieri ’22)

Let n ≥ 3, if Ω ⊂ Rn is a bounded open set with smooth (connected)
boundary, then (

|∂Ω∗|
|Sn−1|

) n−2
n−1

≤ 1

|Sn−1|

ˆ
∂Ω

∣∣∣∣ H

n − 1

∣∣∣∣dσ,
where Ω∗ is the strictly outward minimising hull of Ω.
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On the Proof of Agostiniani–Fogagnolo–Mazzieri

Moser ’05 establishes a connection between IMCF and the problem of
p-harmonic functions.

Agostiniani, Fogagnolo and Mazzieri replace the weak IMCF with a
novel analysis of p-capacitary potentials of Ω to prove the extended
Minkowski inequality. These p-capacitary potentials are the weak
solutions to the non-linear problem

∆pu := div (|Du|p−2Du) = 0 in Rn\Ω
u = 1 on ∂Ω

u(x) → 0 as |x | → ∞,

(1)

with 1 < p < n.

Their proof relies on discovering effective monotonicity formulas for
newly constructed functionals, holding along the level set flow of the
p-capacitary potentials u associated with Ω.
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Robinson’s method

1 Robinson ’77 first used a divergence identity to prove static vacuum
black hole uniqueness.

2 Cederbaum, Cogo, Leandro, Paulo Dos Santos ’24 generalized to
higher dimensions Robinson’s approach to show the uniqueness of
static vacuum asymptotically flat black holes and equipotential
photon surfaces in (3 + 1) dimensions to (n + 1) dimensions.

3 It was also used to derive geometric inequalities for such black holes.

4 Cederbaum and Miehe ’24 used this approach to prove the Willmore
inequality in Rn.

5 Ongoing work of Cederbaum and León Quirós to use this approach to
show the Wilmore inequality for Riemannian manifolds with
non-negative Ricci curvature.

6 All these proofs use solutions to the linear Laplace equation. This is
the first time solutions to the non-linear p-Laplace equation are used.
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Lp-Minkowski inequality via divergence inequality I

Theorem (Divergence inequality (part I))

Let n ≥ 3, 1 < p < n and Ω ⊂ Rn be a bounded domain with smooth,
connected boundary ∂Ω. Let u be a p-capacitary potential associated with
Ω. Set

a :=


(p − 1)3

4(n − 1)
, if (p − 1)2 ≤ n − 1

p − 1

4
, if (p − 1)2 > n − 1

, b :=
(p − 1)(p − 2)

4
.

Then the divergence inequality

div (F (u)(D|Du|p−1 + (p − 2)D⊥|Du|p−1) + G (u)|Du|p−1Du)

≥aF (u)|Du|p−5

∣∣∣∣D|Du|2 − 2(n − 1)|Du|2

(n − p)u
Du

∣∣∣∣2
+ bF (u)|Du|p−5

∣∣D⊤|Du|2
∣∣2
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Lp-Minkowski inequality via divergence inequality II

Theorem (Divergence Inequality (part II))

holds on Rn\Ω for smooth functions F ,G : (0, 1] → R given by

F (u) = (cu + d)u−
n−1
n−p

+1
,

G (u) = (p − 1)2
[
− n − 1

(n − p)u
F (u) + du−

n−1
n−p

]
,

for any c , d ∈ R satisfying c + d ≥ 0 and d ≥ 0. Here, div denotes the
(Euclidean) divergence. Moreover, if p > 2 we have

|Du|6div (F (u)(D|Du|p−1 + (p − 2)D⊥|Du|p−1) + G (u)|Du|p−1Du) ≥ 0,

where equality holds if and only if Ω is a round ball (unless c = d = 0).
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Outline of the proof of the divergence inequality

1 Calculate divergence of vector field ansatz

W := F (u)(D|Du|p−1 + (p − 2)D⊥|Du|p−1) + G (u)|Du|p−1Du.

2 Use refined Kato inequality to find an estimate on the appearing term
with Hessian.

3 Find set of coupled ODE’s for F and G to make the lower bound
non-negative

(p − 1)2F ′(u) + G (u) = −a
8(n − 1)

(n − p)u
F (u)

G ′(u) = a
4(n − 1)2

(n − p)2u2
F (u).

4 Solve ODE to find solutions for F and G .
5 Show rigidity case.
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Integral identity

Proposition (Integral identity)

Let Ω ⊂ Rn be a bounded domain with smooth, connected boundary ∂Ω
and p-capacitary potential u. Let c , d ∈ R such that c + d ≥ 0 and d ≥ 0.
Consider the vector field W , with F and G given as before. Let
0 < u0 < u1 ≤ 1. Then
ˆ
{u0<u<u1}

divWdµ =

ˆ
{u=u1}

((p − 1)F (u)|Du|p−1H − G (u)|Du|p)dσ

−
ˆ
{u=u0}

((p − 1)F (u)|Du|p−1H − G (u)|Du|p)dσ

holds.

To prove this simply

1 calculate ⟨W , ν⟩ with ν the unit normal to the level set,

2 and apply the divergence theorem.
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and p-capacitary potential u. Let c , d ∈ R such that c + d ≥ 0 and d ≥ 0.
Consider the vector field W , with F and G given as before. Let
0 < u0 < u1 ≤ 1. Then
ˆ
{u0<u<u1}

divWdµ =

ˆ
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Application of the integral identity

1 We use the fact that divW ≥ 0 holds by the divergence inequality.

2 Evaluate the first integral at the boundary ∂Ω and the second at
infinity

0 ≤ (p − 1)F (1)

ˆ
∂Ω

|Du|p−1H − (p − 1)G (1)

ˆ
∂Ω

|Du|pdσ

− lim
τ→∞

ˆ
{u= 1

τ
}
((p − 1)F (u)|Du|p−1H − G (u)|Du|p)dσ

3 Calculate the asymptotic behavior of F (u), G (u), H, |Du| and dσ.

4 Use the asymptotics to find...
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Parametric Geometric Inequality

Theorem (Parametric geometric inequality)

Let n ≥ 3, 2 < p < n and Ω ⊂ Rn be a bounded domain with smooth
connected boundary ∂Ω. Let u be a p-capacitary potential associated with
Ω and consider parameters c, d ∈ R satisfying c + d ≥ 0 and d ≥ 0. One
then has

d(p − 1)

(
n − p

p − 1

)p

Cp(Ω)
n−p−1
n−p |Sn−1|

≤ (c + d)

ˆ
∂Ω

|Du|p−1Hdσ

+ (p − 1)

[
d − n − 1

n − p
(c + d)

]ˆ
∂Ω

|Du|pdσ.

Equality holds iff Ω is a round ball (unless c = d = 0).
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Concluding the Minkowski Inequality

Choosing c = 1 and d = 0 in the parametric geometric inequality yields

p − 1

n − p

ˆ
∂Ω

|Du|pdσ ≤
ˆ
∂Ω

|Du|p−1

∣∣∣∣ H

n − 1

∣∣∣∣dσ.

By the Hölder inequality, one gets

ˆ
∂Ω

|Du|pdσ ≤
(
n − p

p − 1

)p ˆ
∂Ω

∣∣∣∣ H

n − 1

∣∣∣∣pdσ.
Choosing c = −1 and d = 1 on the other hand one obtains(

n − p

p − 1

)p

Cp(Ω)
n−p−1
n−p |Sn−1| ≤

ˆ
∂Ω

|Du|pdσ.

Combining these two yields the Lp-Minkowski inequality.
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The End

Thank you for your attention!
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