A new proof of the extended Minkowski inequality via a divergence inequality

Florian Babisch

supervised by Prof. Carla Cederbaum

Department of Geometric Analysis, Differential Geometry and General Relativity

University of Tübingen

florian.babisch@student.uni-tuebingen.de

January 22, 2025

Table of Contents

Introduction to the Minkowski Inequality

- Generalizing to higher dimensions
- Generalizing to non-convex domains

2 Applications of the Minkowski inequality

3 Generalizing the Minkowski Inequality

- The L^p-Minkowski Inequality
- On the Proof of Agostiniani–Fogagnolo–Mazzieri
- On the Proof using Robinson's method via a divergence inequality

Table of Contents

Introduction to the Minkowski Inequality

- Generalizing to higher dimensions
- Generalizing to non-convex domains

2 Applications of the Minkowski inequality

3 Generalizing the Minkowski Inequality

- The *L^p*-Minkowski Inequality
- On the Proof of Agostiniani–Fogagnolo–Mazzieri
- On the Proof using Robinson's method via a divergence inequality

Historical Background

 Hermann Minkowski in his work 'Volumen und Oberflächen' from 1903 proved two inequalities for convex bodies in n = 3 dimensions.

Historical Background

 Hermann Minkowski in his work 'Volumen und Oberflächen' from 1903 proved two inequalities for convex bodies in n = 3 dimensions.

Theorem

Let K_1 be a convex body^a and K_2 a ball of radius 1. Denote by V_0 the volume, $3V_1$ the surface area, and $3V_2$ the integral of mean curvature of K_1 and denote by $V_3 = 4\pi/3$ the volume of the unit ball in three dimensions, then

$$V_1^2 \ge V_0 V_2 \quad \text{and} \quad V_2^2 \ge V_1 V_3,$$

with equality if and only if K_1 is a ball^b.

^aCompact convex set with non-empty interior. ^bThis is the rigidity case.

Florian Babisch (Tübingen)

• $V_1^2 \ge V_0 V_2$ and $V_2^2 \ge V_1 V_3$ are now known as *Minkowski inequalities* in convex geometry.

- $V_1^2 \ge V_0 V_2$ and $V_2^2 \ge V_1 V_3$ are now known as *Minkowski inequalities* in convex geometry.
- When we talk about *the* Minkowski inequality we will exclusively refer to the second one $V_2^2 \ge V_1 V_3$.

- $V_1^2 \ge V_0 V_2$ and $V_2^2 \ge V_1 V_3$ are now known as *Minkowski inequalities* in convex geometry.
- When we talk about *the* Minkowski inequality we will exclusively refer to the second one $V_2^2 \ge V_1 V_3$.

This Minkowski inequality asserts

Among all convex bodies with the same surface area, balls alone minimize the integral of mean curvature.

Generalizing to higher dimensions

 This early version of the Minkowski inequality for n = 3 can be directly generalized to higher dimensions n ≥ 3.

6/25

Generalizing to higher dimensions

- This early version of the Minkowski inequality for n = 3 can be directly generalized to higher dimensions n ≥ 3.
- In modern notation the Minkowski inequality reads:

Theorem (Minkowski Inequality)

If $\Omega \Subset \mathbb{R}^n$ with $n \ge 3$ is a convex domain with smooth, boundary and H the mean curvature of $\partial \Omega$ computed with respect to the outward unit normal, then

$$\left(rac{|\mathbb{S}^{n-1}|}{|\partial\Omega|}
ight)^{1/(n-1)} \leq f_{\partial\Omega} \, rac{H}{n-1} d\sigma$$

with equality if and only if Ω is a ball.

Remark:
$$\int_E f d\mu = \frac{1}{\mu(E)} \int_E f d\mu =$$
 "average of f over set E".

Natural Question: Does the Minkowski Inequality hold true for larger classes of domains than just for the convex one?

¹A geometric evolution equation for submanifolds.

Natural Question: Does the Minkowski Inequality hold true for larger classes of domains than just for the convex one? Answer: Yes!

¹A geometric evolution equation for submanifolds.

Natural Question: Does the Minkowski Inequality hold true for larger classes of domains than just for the convex one? Answer: Yes!

• Using the the method of smooth *Inverse Mean Curvature Flow* (*IMCF*)¹ Guan-Li '09 based on results from Gerhardt 1990, and Urbars 1990 extended it to the family of *starshaped domains with strictly mean-convex boundary*

¹A geometric evolution equation for submanifolds.

Natural Question: Does the Minkowski Inequality hold true for larger classes of domains than just for the convex one? Answer: Yes!

- Using the the method of smooth *Inverse Mean Curvature Flow* (*IMCF*)¹ Guan-Li '09 based on results from Gerhardt 1990, and Urbars 1990 extended it to the family of *starshaped domains with strictly mean-convex boundary*
- Using the method of *Optimal Transport* Qiu '15 based on Chang-Wang '13 extended it to *bounded open sets with smooth boundary*.

¹A geometric evolution equation for submanifolds.

Introduction to the Minkowski Inequality

- Generalizing to higher dimensions
- Generalizing to non-convex domains

2 Applications of the Minkowski inequality

Generalizing the Minkowski Inequality

- The *L^p*-Minkowski Inequality
- On the Proof of Agostiniani–Fogagnolo–Mazzieri
- On the Proof using Robinson's method via a divergence inequality

• Minkowski inequality has been proven by Wei '17 for Schwarzschild spacetime using IMCF.

- Minkowski inequality has been proven by Wei '17 for Schwarzschild spacetime using IMCF.
- and by Brendle, Hung, and Wang for anti-de-Sitter-Schwarzschild manifolds also using IMCF.

- Minkowski inequality has been proven by Wei '17 for Schwarzschild spacetime using IMCF.
- and by Brendle, Hung, and Wang for anti-de-Sitter-Schwarzschild manifolds also using IMCF.
- Minkowski inequality has also been proven by McCormick '18 for asymptotically flat static manifolds.

- Minkowski inequality has been proven by Wei '17 for Schwarzschild spacetime using IMCF.
- and by Brendle, Hung, and Wang for anti-de-Sitter-Schwarzschild manifolds also using IMCF.
- Minkowski inequality has also been proven by McCormick '18 for asymptotically flat static manifolds.
- Harvie-Wang '24 prove a black hole uniqueness theorem based on the works of McCormick using the Minkowski inequality.

- Minkowski inequality has been proven by Wei '17 for Schwarzschild spacetime using IMCF.
- and by Brendle, Hung, and Wang for anti-de-Sitter-Schwarzschild manifolds also using IMCF.
- Minkowski inequality has also been proven by McCormick '18 for asymptotically flat static manifolds.
- Harvie-Wang '24 prove a black hole uniqueness theorem based on the works of McCormick using the Minkowski inequality.

Introduction to the Minkowski Inequality

- Generalizing to higher dimensions
- Generalizing to non-convex domains

2 Applications of the Minkowski inequality

3 Generalizing the Minkowski Inequality

- The L^p-Minkowski Inequality
- On the Proof of Agostiniani–Fogagnolo–Mazzieri
- On the Proof using Robinson's method via a divergence inequality

The L^p-Minkowski Inequality

One generalization of the Minkowski inequality is:

Theorem (*L^p*-Minkowski Inequality, Agostiniani–Fogagnolo–Mazzieri '22)

Let $\Omega \subset \mathbb{R}^n$ be an open bounded set with smooth (connected) boundary. Then, for every 1 , the following inequality holds

$$\mathcal{C}_p(\Omega)^{rac{n-p-1}{n-p}} \leq rac{1}{|\mathbb{S}^{n-1}|} \int_{\partial\Omega} \left|rac{H}{n-1}
ight|^p d\sigma.$$

Here, $C_p(\Omega)$ is the normalized p-capacity of Ω and H is the mean curvature of $\partial \Omega$ computed with respect to the outward unit normal. Moreover, equality holds iff Ω is a ball.

$$\mathsf{C}_{p}(\Omega) = \inf\left\{ \left(\frac{p-1}{n-p}\right)^{p-1} \frac{1}{|\mathbb{S}^{n-1}|} \int_{\mathbb{R}^{n}} |Dv|^{p} d\mu \ \middle| \ v \in C_{0}^{\infty}(\mathbb{R}^{n}), v \geq 1 \text{ on } \Omega \right\}$$

Letting $p \rightarrow 1^+$ in the L^p -Minkowski inequality and using that

$$\lim_{p \to 1^+} C_p(\Omega)^{\frac{n-p-1}{n-p}} = \left(\frac{|\partial \Omega^*|}{|\mathbb{S}^{n-1}|}\right)^{\frac{n-2}{n-1}}$$

holds, we find

Theorem (Extended Minkowski inequality, Agostiniani–Fogagnolo–Mazzieri '22)

Let $n \ge 3$, if $\Omega \subset \mathbb{R}^n$ is a bounded open set with smooth (connected) boundary, then

$$\left(\frac{|\partial\Omega^*|}{|\mathbb{S}^{n-1}|}\right)^{\frac{n-2}{n-1}} \leq \frac{1}{|\mathbb{S}^{n-1}|} \int_{\partial\Omega} \left|\frac{H}{n-1}\right| d\sigma,$$

where Ω^* is the strictly outward minimising hull of Ω .

Table of Contents

Introduction to the Minkowski Inequality

- Generalizing to higher dimensions
- Generalizing to non-convex domains

2 Applications of the Minkowski inequality

3 Generalizing the Minkowski Inequality

- The L^p-Minkowski Inequality
- On the Proof of Agostiniani–Fogagnolo–Mazzieri
- On the Proof using Robinson's method via a divergence inequality

On the Proof of Agostiniani–Fogagnolo–Mazzieri

- Moser '05 establishes a connection between IMCF and the problem of p-harmonic functions.
- Agostiniani, Fogagnolo and Mazzieri replace the *weak IMCF* with a novel analysis of *p*-capacitary potentials of Ω to prove the extended Minkowski inequality. These *p*-capacitary potentials are the weak solutions to the non-linear problem

$$\begin{cases} \Delta_{p} u := \operatorname{div} \left(|Du|^{p-2} Du \right) = 0 & \text{in} \quad \mathbb{R}^{n} \setminus \overline{\Omega} \\ u = 1 & \text{on} \quad \partial \Omega \\ u(x) \to 0 & \text{as} \quad |x| \to \infty, \end{cases}$$
(1)

with 1 .

 Their proof relies on discovering *effective monotonicity formulas* for newly constructed functionals, holding along the level set flow of the *p*-capacitary potentials *u* associated with Ω.

Table of Contents

Introduction to the Minkowski Inequality

- Generalizing to higher dimensions
- Generalizing to non-convex domains

2 Applications of the Minkowski inequality

3 Generalizing the Minkowski Inequality

- The L^p-Minkowski Inequality
- On the Proof of Agostiniani–Fogagnolo–Mazzieri
- On the Proof using Robinson's method via a divergence inequality

- O Robinson '77 first used a divergence identity to prove static vacuum black hole uniqueness.

- Robinson '77 first used a divergence identity to prove static vacuum black hole uniqueness.
- Cederbaum, Cogo, Leandro, Paulo Dos Santos '24 generalized to higher dimensions Robinson's approach to show the uniqueness of static vacuum asymptotically flat black holes and equipotential photon surfaces in (3 + 1) dimensions to (n + 1) dimensions.

17/25

- Robinson '77 first used a divergence identity to prove static vacuum black hole uniqueness.
- ② Cederbaum, Cogo, Leandro, Paulo Dos Santos '24 generalized to higher dimensions Robinson's approach to show the uniqueness of static vacuum asymptotically flat black holes and equipotential photon surfaces in (3 + 1) dimensions to (n + 1) dimensions.
- It was also used to derive geometric inequalities for such black holes.

- Robinson '77 first used a divergence identity to prove static vacuum black hole uniqueness.
- ² Cederbaum, Cogo, Leandro, Paulo Dos Santos '24 generalized to higher dimensions Robinson's approach to show the uniqueness of static vacuum asymptotically flat black holes and equipotential photon surfaces in (3 + 1) dimensions to (n + 1) dimensions.
- It was also used to derive geometric inequalities for such black holes.
- Output Cederbaum and Miehe '24 used this approach to prove the Willmore inequality in ℝⁿ.

- Robinson '77 first used a divergence identity to prove static vacuum black hole uniqueness.
- ² Cederbaum, Cogo, Leandro, Paulo Dos Santos '24 generalized to higher dimensions Robinson's approach to show the uniqueness of static vacuum asymptotically flat black holes and equipotential photon surfaces in (3 + 1) dimensions to (n + 1) dimensions.
- It was also used to derive geometric inequalities for such black holes.
- Gederbaum and Miehe '24 used this approach to prove the Willmore inequality in ℝⁿ.
- Ongoing work of Cederbaum and León Quirós to use this approach to show the Wilmore inequality for Riemannian manifolds with non-negative Ricci curvature.

- Robinson '77 first used a divergence identity to prove static vacuum black hole uniqueness.
- ² Cederbaum, Cogo, Leandro, Paulo Dos Santos '24 generalized to higher dimensions Robinson's approach to show the uniqueness of static vacuum asymptotically flat black holes and equipotential photon surfaces in (3 + 1) dimensions to (n + 1) dimensions.
- It was also used to derive geometric inequalities for such black holes.
- Gederbaum and Miehe '24 used this approach to prove the Willmore inequality in ℝⁿ.
- Ongoing work of Cederbaum and León Quirós to use this approach to show the Wilmore inequality for Riemannian manifolds with non-negative Ricci curvature.
- All these proofs use solutions to the linear Laplace equation. This is the first time solutions to the non-linear *p*-Laplace equation are used.

L^p-Minkowski inequality via divergence inequality I

Theorem (Divergence inequality (part I))

Let $n \ge 3$, $1 and <math>\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth, connected boundary $\partial \Omega$. Let u be a p-capacitary potential associated with Ω . Set

$$\mathsf{a} := egin{cases} \displaystyle rac{(p-1)^3}{4(n-1)} &, \ if \ (p-1)^2 \leq n-1 \ \displaystyle rac{p-1}{4} &, \ if \ (p-1)^2 > n-1 \ \end{pmatrix}, \quad b := \displaystyle rac{(p-1)(p-2)}{4}$$

Then the divergence inequality

$$\begin{aligned} & \operatorname{liv}(F(u)(D|Du|^{p-1} + (p-2)D^{\perp}|Du|^{p-1}) + G(u)|Du|^{p-1}Du) \\ & \geq aF(u)|Du|^{p-5} \left| D|Du|^2 - \frac{2(n-1)|Du|^2}{(n-p)u}Du \right|^2 \\ & + bF(u)|Du|^{p-5} \left| D^{\top}|Du|^2 \right|^2 \end{aligned}$$

Theorem (Divergence Inequality (part II))

holds on $\mathbb{R}^n \setminus \overline{\Omega}$ for smooth functions $F, G : (0, 1] \to \mathbb{R}$ given by

$$F(u) = (cu + d)u^{-\frac{n-1}{n-p}+1},$$

$$G(u) = (p-1)^{2} \left[-\frac{n-1}{(n-p)u}F(u) + du^{-\frac{n-1}{n-p}} \right],$$

for any $c, d \in \mathbb{R}$ satisfying $c + d \ge 0$ and $d \ge 0$. Here, div denotes the (Euclidean) divergence. Moreover, if $\mathbf{p} > \mathbf{2}$ we have

$$|Du|^{6} \operatorname{div}(F(u)(D|Du|^{p-1} + (p-2)D^{\perp}|Du|^{p-1}) + G(u)|Du|^{p-1}Du) \geq 0,$$

where equality holds if and only if Ω is a round ball (unless c = d = 0).

Calculate divergence of vector field ansatz

 $W := F(u)(D|Du|^{p-1} + (p-2)D^{\perp}|Du|^{p-1}) + G(u)|Du|^{p-1}Du.$

20 / 25

Calculate divergence of vector field ansatz

 $W := F(u)(D|Du|^{p-1} + (p-2)D^{\perp}|Du|^{p-1}) + G(u)|Du|^{p-1}Du.$

Our Section 2 Use refined Kato inequality to find an estimate on the appearing term with Hessian.

20 / 25

Calculate divergence of vector field ansatz

 $W := F(u)(D|Du|^{p-1} + (p-2)D^{\perp}|Du|^{p-1}) + G(u)|Du|^{p-1}Du.$

- Our Section 2 Use refined Kato inequality to find an estimate on the appearing term with Hessian.
- Find set of coupled ODE's for F and G to make the lower bound non-negative

$$(p-1)^2 F'(u) + G(u) = -a rac{8(n-1)}{(n-p)u} F(u)$$

 $G'(u) = a rac{4(n-1)^2}{(n-p)^2 u^2} F(u).$

Calculate divergence of vector field ansatz

 $W := F(u)(D|Du|^{p-1} + (p-2)D^{\perp}|Du|^{p-1}) + G(u)|Du|^{p-1}Du.$

- Ose refined Kato inequality to find an estimate on the appearing term with Hessian.
- Find set of coupled ODE's for F and G to make the lower bound non-negative

$$(p-1)^2 F'(u) + G(u) = -a rac{8(n-1)}{(n-p)u} F(u)$$

 $G'(u) = a rac{4(n-1)^2}{(n-p)^2 u^2} F(u).$

Solve ODE to find solutions for F and G.

Calculate divergence of vector field ansatz

 $W := F(u)(D|Du|^{p-1} + (p-2)D^{\perp}|Du|^{p-1}) + G(u)|Du|^{p-1}Du.$

- Ose refined Kato inequality to find an estimate on the appearing term with Hessian.
- Find set of coupled ODE's for F and G to make the lower bound non-negative

$$(p-1)^2 F'(u) + G(u) = -a rac{8(n-1)}{(n-p)u} F(u)$$

 $G'(u) = a rac{4(n-1)^2}{(n-p)^2 u^2} F(u).$

- Solve ODE to find solutions for F and G.
- Show rigidity case.

Florian Babisch (Tübingen)

Calculate divergence of vector field ansatz

 $W := F(u)(D|Du|^{p-1} + (p-2)D^{\perp}|Du|^{p-1}) + G(u)|Du|^{p-1}Du.$

- Ose refined Kato inequality to find an estimate on the appearing term with Hessian.
- Find set of coupled ODE's for F and G to make the lower bound non-negative

$$(p-1)^2 F'(u) + G(u) = -a rac{8(n-1)}{(n-p)u} F(u)$$

 $G'(u) = a rac{4(n-1)^2}{(n-p)^2 u^2} F(u).$

- Solve ODE to find solutions for F and G.
- Show rigidity case.

Florian Babisch (Tübingen)

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth, connected boundary $\partial \Omega$ and p-capacitary potential u. Let $c, d \in \mathbb{R}$ such that $c + d \ge 0$ and $d \ge 0$. Consider the vector field W, with F and G given as before. Let $0 < u_0 < u_1 \le 1$. Then

$$\int_{\{u_0 < u < u_1\}} \operatorname{div} W d\mu = \int_{\{u = u_1\}} ((p-1)F(u)|Du|^{p-1}H - G(u)|Du|^p) d\sigma$$
$$- \int_{\{u = u_0\}} ((p-1)F(u)|Du|^{p-1}H - G(u)|Du|^p) d\sigma$$

holds.

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth, connected boundary $\partial \Omega$ and p-capacitary potential u. Let $c, d \in \mathbb{R}$ such that $c + d \ge 0$ and $d \ge 0$. Consider the vector field W, with F and G given as before. Let $0 < u_0 < u_1 \le 1$. Then

$$\int_{\{u_0 < u < u_1\}} \operatorname{div} W d\mu = \int_{\{u = u_1\}} ((p-1)F(u)|Du|^{p-1}H - G(u)|Du|^p) d\sigma$$
$$- \int_{\{u = u_0\}} ((p-1)F(u)|Du|^{p-1}H - G(u)|Du|^p) d\sigma$$

holds.

To prove this simply

 $\textbf{0} \ \text{calculate} \ \langle W, \nu \rangle \ \text{with} \ \nu \ \text{the unit normal to the level set,}$

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth, connected boundary $\partial \Omega$ and p-capacitary potential u. Let $c, d \in \mathbb{R}$ such that $c + d \ge 0$ and $d \ge 0$. Consider the vector field W, with F and G given as before. Let $0 < u_0 < u_1 \le 1$. Then

$$\int_{\{u_0 < u < u_1\}} \operatorname{div} W d\mu = \int_{\{u = u_1\}} ((p-1)F(u)|Du|^{p-1}H - G(u)|Du|^p) d\sigma$$
$$- \int_{\{u = u_0\}} ((p-1)F(u)|Du|^{p-1}H - G(u)|Du|^p) d\sigma$$

holds.

To prove this simply

 $\textbf{0} \ \text{calculate} \ \langle W, \nu \rangle \ \text{with} \ \nu \ \text{the unit normal to the level set,}$

and apply the divergence theorem.

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth, connected boundary $\partial \Omega$ and p-capacitary potential u. Let $c, d \in \mathbb{R}$ such that $c + d \ge 0$ and $d \ge 0$. Consider the vector field W, with F and G given as before. Let $0 < u_0 < u_1 \le 1$. Then

$$\int_{\{u_0 < u < u_1\}} \operatorname{div} W d\mu = \int_{\{u = u_1\}} ((p-1)F(u)|Du|^{p-1}H - G(u)|Du|^p) d\sigma$$
$$- \int_{\{u = u_0\}} ((p-1)F(u)|Du|^{p-1}H - G(u)|Du|^p) d\sigma$$

holds.

To prove this simply

 $\textbf{0} \ \text{calculate} \ \langle W, \nu \rangle \ \text{with} \ \nu \ \text{the unit normal to the level set,}$

and apply the divergence theorem.

() We use the fact that div $W \ge 0$ holds by the divergence inequality.

22 / 25

Application of the integral identity

- **(**) We use the fact that div $W \ge 0$ holds by the divergence inequality.
- **②** Evaluate the first integral at the boundary $\partial \Omega$ and the second at infinity

$$egin{aligned} \mathcal{D} &\leq (p-1)F(1)\int_{\partial\Omega}|Du|^{p-1}H-(p-1)G(1)\int_{\partial\Omega}|Du|^pd\sigma\ &-\lim_{ au o\infty}\int_{\{u=rac{1}{ au}\}}((p-1)F(u)|Du|^{p-1}H-G(u)|Du|^p)d\sigma \end{aligned}$$

- **()** We use the fact that div $W \ge 0$ holds by the divergence inequality.
- **②** Evaluate the first integral at the boundary $\partial \Omega$ and the second at infinity

$$0 \le (p-1)F(1) \int_{\partial\Omega} |Du|^{p-1}H - (p-1)G(1) \int_{\partial\Omega} |Du|^p d\sigma$$
$$-\lim_{\tau \to \infty} \int_{\{u=\frac{1}{\tau}\}} ((p-1)F(u)|Du|^{p-1}H - G(u)|Du|^p) d\sigma$$

③ Calculate the asymptotic behavior of F(u), G(u), H, |Du| and $d\sigma$.

- **()** We use the fact that div $W \ge 0$ holds by the divergence inequality.
- **②** Evaluate the first integral at the boundary $\partial \Omega$ and the second at infinity

$$0 \le (p-1)F(1) \int_{\partial\Omega} |Du|^{p-1}H - (p-1)G(1) \int_{\partial\Omega} |Du|^p d\sigma$$
$$-\lim_{\tau \to \infty} \int_{\{u=\frac{1}{\tau}\}} ((p-1)F(u)|Du|^{p-1}H - G(u)|Du|^p) d\sigma$$

Calculate the asymptotic behavior of F(u), G(u), H, |Du| and dσ.
Use the asymptotics to find...

Theorem (Parametric geometric inequality)

Let $n \ge 3$, $\mathbf{2} < \mathbf{p} < \mathbf{n}$ and $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth connected boundary $\partial \Omega$. Let u be a p-capacitary potential associated with Ω and consider parameters $c, d \in \mathbb{R}$ satisfying $c + d \ge 0$ and $d \ge 0$. One then has

$$egin{aligned} d(p-1)igg(rac{n-p}{p-1}igg)^p C_p(\Omega)^{rac{n-p-1}{n-p}}|\mathbb{S}^{n-1}| \ &\leq (c+d)\int_{\partial\Omega}|Du|^{p-1}Hd\sigma \ &+ (p-1)igg[d-rac{n-1}{n-p}(c+d)igg]\int_{\partial\Omega}|Du|^pd\sigma. \end{aligned}$$

Equality holds iff Ω is a round ball (unless c = d = 0).

Choosing c = 1 and d = 0 in the parametric geometric inequality yields

$$\frac{p-1}{n-p}\int_{\partial\Omega}|Du|^pd\sigma\leq\int_{\partial\Omega}|Du|^{p-1}\bigg|\frac{H}{n-1}\bigg|d\sigma.$$

24 / 25

Choosing c = 1 and d = 0 in the parametric geometric inequality yields

$$\frac{p-1}{n-p}\int_{\partial\Omega}|Du|^pd\sigma\leq\int_{\partial\Omega}|Du|^{p-1}\bigg|\frac{H}{n-1}\bigg|d\sigma.$$

By the Hölder inequality, one gets

$$\int_{\partial\Omega} |Du|^p d\sigma \leq \left(\frac{n-p}{p-1}\right)^p \int_{\partial\Omega} \left|\frac{H}{n-1}\right|^p d\sigma.$$

24 / 25

Choosing c = 1 and d = 0 in the parametric geometric inequality yields

$$\frac{p-1}{n-p}\int_{\partial\Omega}|Du|^pd\sigma\leq\int_{\partial\Omega}|Du|^{p-1}\bigg|\frac{H}{n-1}\bigg|d\sigma.$$

By the Hölder inequality, one gets

$$\int_{\partial\Omega} |Du|^p d\sigma \leq \left(\frac{n-p}{p-1}\right)^p \int_{\partial\Omega} \left|\frac{H}{n-1}\right|^p d\sigma.$$

Choosing c = -1 and d = 1 on the other hand one obtains

$$\left(\frac{n-p}{p-1}\right)^{p}C_{p}(\Omega)^{\frac{n-p-1}{n-p}}|\mathbb{S}^{n-1}|\leq \int_{\partial\Omega}|Du|^{p}d\sigma$$

Choosing c = 1 and d = 0 in the parametric geometric inequality yields

$$\frac{p-1}{n-p}\int_{\partial\Omega}|Du|^pd\sigma\leq\int_{\partial\Omega}|Du|^{p-1}\bigg|\frac{H}{n-1}\bigg|d\sigma.$$

By the Hölder inequality, one gets

$$\int_{\partial\Omega} |Du|^p d\sigma \leq \left(\frac{n-p}{p-1}\right)^p \int_{\partial\Omega} \left|\frac{H}{n-1}\right|^p d\sigma.$$

Choosing c = -1 and d = 1 on the other hand one obtains

$$\left(\frac{n-p}{p-1}\right)^p C_p(\Omega)^{\frac{n-p-1}{n-p}} |\mathbb{S}^{n-1}| \leq \int_{\partial\Omega} |Du|^p d\sigma.$$

Combining these two yields the L^{p} -Minkowski inequality.

Thank you for your attention!

