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Introduction and Motivation

In general relativity, the equivalence principle motivates the hypothesis that freely-falling test particles follow geodesics. At first glance, this geodesic hypothesis seems to
be independent of the central equation of general relativity, the Einstein field equation. However, here we will explore two proofs which show that geodesic motion is
indeed a consequence of Einstein’s equation. The mathematical statement and proof of this hypothesis gives insight on the concept of point particles in general relativity.

Ehlers-Geroch
Here we consider an extension given by Bezares et al. of the original theorem.
This is a proof by contradiction which shows that if we have matter supported on
a world tube of a timelike curve, and we suppose this world tube can be shrunk
down to the curve, then the curve must be a geodesic in the background metric.

Assumptions

1. There exists a sequence gn of Lorentzian metrics in M(U) (the space of
smooth metrics on U ⊂ M) such that gn converges to g in the topology
induced by the metric dC 1.

2. Each metric gn has an Einstein tensor (n)Gab satisfying
(n)∇c

(n)Gab = 0. We
assume that (n)Gab ̸= 0 near γ and that its support, spt((n)Gab), is contained
in Un (a tubular neighborhood of γ of radius 1/n).

3. There exists a foliation of U by spacelike hypersurfaces.

4. For every n the tensor (n)Gab satisfies an “averaged dominant energy
condition” meaning along each gn-timelike curve γ̃ near γ there exists a
constant Kn(γ̃) such that

∫
γ̃maxab |

(n)Gab| (n) dγ̃ ≤ Kn(γ̃)
∫
γ̃

(n)Gabt
atb (n) dγ̃

Lemma 1 (Properties of x , t, β).

Let γ be a timelike curve with unit tangent vector field u on a spacetime (M , g),
and define A = ∇uu. Assume that A(p0) ̸= 0 for some p0 ∈ γ. Then, there exists
vector fields t, x , β near p0 such that:
At the point p0 we define t

a = ua, xa = Aa

|A|, β
a = 0. They are transported along

the curve according to ∇ut = 0,∇ux = 0,∇uβ
a = ub(x

bta − xatb). They are
Killing along γ and β = ϕt + ψx . Moreover, there exist points p− and p+ on
either side of p0 such that ϕ(p±) > 0 and ψ(p+) = −ψ(p−). See Figure 1.
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Figure 1: World tube around γ.

Theorem 2 (Ehlers-Geroch).

Suppose the above assumptions hold. Furthermore assume that Kn(γ̃) is bounded
independently of n and that the following “stabilized ratio condition holds”

lim supn→∞

∫
Σ

(n)Gabv
aηb (n) dΣ∫

Σ′
(n)Gabw aηb (n) dΣ′ <∞ for all gn-spacelike hypersurfaces Σ and Σ′, any

vector v a, and any future-directed gn-timelke vector w
a, where ηb is the

gn-unit-normal vector field. Then the curve γ is a geodesic.

Outline of Proof

Aiming for a contradiction, suppose there is a point p0 as in the lemma. An
important quantity in the proof is the total energy-momentum flux along a vector
field ξ through a spacelike slice Σ of U .

P(ξ,Σ) :=

∫
Σ

Gabξ
bηa dΣ

Also define mn := Pgn(t,Σn) where Σ0 is the leaf of the foliation through p0. This
function has three useful properties.

1. We have limn→∞
1
mn
|Pn(t,Σ)−mn| = 0.

2. If ξ is a Killing vector field for g along γ, then limn→∞
|Pn(ξ,Σ1)−Pn(ξ,Σ2)|

mn
= 0.

3. If a vector field ξ vanishes on Σ ∩ γ = p then limn→∞
|Pn(ξ,Σ)|

mn
= 0.

Now we define a particular sum Kn of the total energy fluxes along the vector
fields x , t, β through the surfaces Σ+,Σ0,Σ− and we use these properties to
estimate the limit limn→∞

Kn

mn
in two different ways. One way gives limn→∞

Kn

mn
= 0

whereas the other gives limn→∞
∣∣Kn

mn
+ ϕ+ + ϕ−

∣∣ = 0, which gives a contradiction.

Gralla-Wald
The key idea of this proof is to consider a 1-parameter family of metrics gab(λ),
where the parameter λ is chosen to capture the idea of a body shrinking to a
curve in a self-similar way as λ→ 0. We then consider the Einstein equation to
first order in λ.

Assumptions

1. Existence of the “ordinary limit”: gab(λ) is such that there exists coordinates
xα such that gµν(λ, x

α) is jointly smooth in (λ, xα), at least for r > R̄λ. For
all λ and r > R̄λ, gab(λ) is a solution to Einstein’s equation. Furthermore,
gµν(λ = 0, xα) is smooth in xα, including at r = 0, and, for λ = 0, the curve
γ defined by r = 0 is timelike.

2. Existence of the “scaled limit”: for each t0, define t̄ ≡ (t − t0)/λ, x̄
i ≡ x i/λ.

Then the metric ḡµ̄ν̄(λ; t0; x̄
α) ≡ λ−2gµ̄ν̄(λ; t0; x̄

α) is jointly smooth in
(λ, t0; x̄

α) for r̄ ≡ r/λ > R̄ .

3. Uniformity condition: each component of gab(λ) in coordinates xµ is a jointly
smooth function of the variables (α ≡ r , β ≡ λ/r) at (0, 0) and fixed t, θ, ϕ.

Lemma 3 (Far-zone Expansion).

The uniformity assumption allows us to expand gab(λ) in a Taylor series in the
variables (α, β) around (0, 0). The lowest order terms are explicitly

gαβ(λ) =(aαβ)00(t) + (aαβ)10(t, θ, ϕ)r + O(r 2)

+ λ

[
(aαβ)01(t, θ, ϕ)

1

r
+ (aαβ)11(t, θ, ϕ) + O(r)

]
+ O(λ2)

We choose coordinates where gαβ(λ = 0, x i = 0) = (aαβ)00(t) = ηαβ. Then our
expansion has the form

gαβ = ηαβ + O(r) + λhαβ + O(λ2)

where hαβ =
cαβ(t,θ,ϕ)

r + O(1).

Theorem 4.

Let gab(λ) be any one-parameter family of metrics satisfying the assumptions.
Then to first order in λ, the far-zone metric perturbation hab corresponds to a
solution to the linearized Einstein equation with a point particle source.

Tab = Muaub
δ(3)(x i)√

−g
dτ
dt where M is a constant and ua is the 4 velocity of γ, which

must be a geodesic if M ̸= 0.

Outline of Proof

From our first assumption hab is a solution to the linearized vacuum Einstein
equation, with linearization taken around gab(λ = 0), for r > 0. In fact, each
component hαβ is a locally L1 function, including at r = 0. Thus hab is well

defined as a distribution. This lets us define Tab ≡ G
(1)
ab [hcd ]/8π as a distribution

as well. Its action on a test tensor field is given by

8πT (f ) =

∫
M

G
(1)
ab [fcd ]h

ab√−g d4x

Evaluating this integral over a region r > ϵ > 0 and taking the limit as ϵ→ 0
yields

T (f ) =

∫
dtNab(t)f

ab(t, r = 0)

Where Nab(t) is a smooth, symmetric tensor field on γ whose components are
given in terms of angular averages of cαβ and its first angular derivatives. Now
notice that ∇aTab = 0 implies T (f ) vanishes if fab = ∇(afb), Furthermore, by
careful choice of test functions we find Nab = M(t)uaub, putting these
observations together we conclude

0 =

∫
dtM(t)ub(ua∇af b)

Integrating by parts and using that f b is arbitrary gives ua∇a(M(t)ub) = 0 and
dM
dt = 0, thus if M ̸= 0 we have ua∇au

b = 0, i.e. γ is a geodesic of gab(λ = 0).

Outlook and Perspectives

We have seen two proofs of geodesic motion. The Ehlers-Geroch proof makes explicit conditions on the energy content and is expressed in a coordinate-free way, but is by
contradiction not construction. On the other hand, the Gralla-Wald proof provides a perturbative construction of the trajectory of a body which allows us to study the
dynamics of extended bodies by considering higher order terms. Peter Hintz has recently used gluing to construct a spacetime that satisfies the Gralla-Wald assumptions.
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