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Setup

Studying the Schwarzschild solution to the Einstein equations, a feature that appears al-
most as natural as the existence of an event horizon, is the presence of a photon sphere,P n,
at r = 3m. This hypersurface does not only appear in the Schwarzschild solution, but also in
many other space-times. Wewill, however, focus only on the class of spherically symmetric
solutions, that is the space-times which metric can be expressed as follows:

ds2 = −e2ν(r)dt2 + e2µ(r)dr2 + r2(dθ2 + sin2 θdφ2). (1)

Photon surface and Photon sphere

Definition (photonsurface): Letus consider a lorentzian space-time (Ln+1, g). Wedefine
a photon surface to be a time-like hypersurface immersed in (Ln+1, g) such that every
null-geodesic initially tangent toP n remains tangent at all times.

Definition (photon sphere): if we additionally require (Ln+1, g) to be static and that each
connected component of the photon surface has constant lapse function, then we call
this photon surface a photon sphere.

Let us call p themetric induced on this hypersurface and χ its second fundamental form.
Then, Theorem2.2 in [1] gives operative conditions for (P n, p) being a photon surface. In
particular one of them is that (P n, p) is a photon surface if, and only if, it is a totally umbilic
hypersurface:

χµν = trpχ

n
pµν. (2)

Construction of the perturbation

Consider ametric of the form as the one given in (1) and assume exp{(2ν)} = (1 − 2m/r) =
exp{(−2µ)}. We can then perturb this metric to

g = g(0) + εg(1) + ε2g(2) + . . .

where g(0) is the background metric. For simplicity let us consider only the first order per-
turbation, since, from section 3 of [2], the higher order terms can be treated in a similar
manner. Let hµν = εg

(1)
µν be a small variation, then we can write the linearization of the Ein-

stein equations as
Rµν + δRµν = 0. (3)

Because the background metric is Schwarzschild the first term vanish, then δRµν = 0 im-
plies that the perturbed space-time is also in vacuum.

This are hyperbolic, non linear, partial differential equations which we hope to solve and
obtain a perturbation that can be separated in terms that depend only on one of the com-
ponents. The tool that does the trick is the development in spherical harmonics. From this
we obtain two possible solutions for the perturbation one for odd waves and the other for
even ones.

Using the changeof gauge in [3] it is possible to simplify the formof theperturbation so that
it only depends on the radial coordinate. In the specific case of the even parity solutionwith
m = 0, ℓ > 2 (wherem and ℓ are the coefficients of the spherical harmonics) the solution to
the PDEobtained by plugging the variation in the first variation of the Einstein equations is

H(r) = αP
(2)
ℓ (1 − r

m
) + βQ

(2)
ℓ (1 − r

m
) (4)

Physical interpretation of the terms

Comparing the result to the case of the electrostatic potential, it is possible to give a pos-
sible interpretation to the two terms.

The first, αP (2)
ℓ (1 − r/m), can be thought to be the variation of the spherical symmetry

due to ”internalmasses”, whileβQ(2)
ℓ (1 − r/m) can be thought of as a perturbation due to

”masses at infinity”. Notice, however, that by assumption we are working in vacuum, and
that the actualmeaning of ”internalmass” or ”mass at infinity” is therefore different from
the one we usually mean.

Considerations on the uniqueness

Before going into theproof of uniqueness, it is important to understand the following. Even
if we can rule out the existence of regular solutions branching from Schwarzschild, or any
other spherically symmetric space-time, it is technically possible for a sequence of regu-
lar solutions to approach, in the limit, a spherically symmetric space-time in a singular way.
Therefore, proving the uniqueness by showing that there exists not perturbative solutions
is not enough.

At the same time proving that a first order perturbation exists does notmean that weman-
aged to construct a non linear solution, This is because it might be that the second or third
order perturbative term is not compatible with the photon surface condition.

Perturbing the spherical symmetry on time slices

In [4] C. Cederbaum proved that the existence of a photon sphere around a static, asymp-
totically flat space-time in S (that is the class of space-times with a spherically symmetric
metric), assuming a constant lapse function, implies that the space-time in question must
be Schwarzschild. Physically this assumption is justified by saying that the photon sphere is
monochromatic, since by definition g(γ̇, N−1∂t) = E = νℏ.

In [2]Yoshino takesanorthogonaldirection. Hesets the lapse function tobeanon-constant
function in the spacial components, maintaining it static in the time evolution. The idea is
thatwewant to check if, perturbing the spacial spherical symmetry, there exists someother
metric that allows for the existence of a photon sphere.

Figure 1. The right picture shows a space-time as it appears in the hypothesis of [4], which evolves as a
cylinder. On the left a possible space-time that has non-constant static lapse function.

If so, the photon sphere in distorted Schwarzschild will be found at a radius r = f (θ, φ)
where f = f (0) + εf (1) + . . . with f (0) = 3m. Then the perturbed photon sphere condition
becomes

f
(1)
,θφ = cot θ f (1)

,θ ; (5)

f (1)
,φφ = sin2 θ f

(1)
,θθ − sin θ cos θf (1)

,θ ; (6)(
ν(1)
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= 1
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f (1) − f

(1)
,θθ

)
. (7)

The solution of the first two equations is a linear composition of the spherical harmonics
with (m, ℓ) = (0, 0), (1,±1), and (1, 0). For the last one, we notice that the left hand side
has modes ℓ = 0, 1 while the right hand side has ℓ ≥ 2. This implies that f (1) = 0 and the
condition for r = 3m to be a photon sphere becomes(

ν(1)
,r − ψ(1)

,r

)∣∣∣
r=3m

= 0, (8)

where ψ(1) is the the perturbation of the exponent in the exponential term in front of the
angular component of themetric (exp{2ψ}withψ(0) = 0). Consider now the region outside
of r = 3m and assume ”vacuum”, i.e. α = 0. Combining equation (4) and (8) we get

H
(1)
,x

H(1)

∣∣∣∣∣
x=2

= 1
3

where x = r/m− 1. Which is not satisfied in this setting. Therefore, if we perturb ametric
around Schwarzschild using a static perturbation, no photon sphere is allowed.

What’s next?

Some progress has been done on the uniqueness of the photon sphere in the class
of spherically symmetric, asymptotically flat space-times S from the publication of
Yoshino’s paper. In [5], for example, C. Cederbaum and G. Galloway showed that in this
setting, relaxing the assumption of constant lapse function by making it equipotential,
uniqueness holds still.

The goal for the master thesis is to generalize the computations done in [3] by Regge
and Wheeler to the whole class S . And then use the method employed by Yoshino to
prove uniqueness by relaxing the staticity assumption on the lapse function, replacing
it with the equipotential assumption. This can be physically interpreted as having a non
monochromatic photon sphere.
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