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Motivation

I Why Hyperboloidal slices?
I Need to include future null infinity, I +, in the computational

domain with a well-posed formalism.

I Why I +?
I The only region where Gravitational Waves (GW) can be

defined unambiguously.
I Useful for studying phenomena of fundamental interest, like

weak cosmic censorship conjecture, black hole formation, etc.

I Existing methods like Extrapolation from Cauchy evolution,
CCE and CCM introduce errors due to their limitations.
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Existing method 1: Extrapolation

Figure: Extrapolation schematics.

Extrapolation Methods from Cauchy evolution:

I Boundary Errors, Extrapolation Errors.
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Existing method 2: Cauchy Characteristic Extraction
(CCE): (PRD 54, 6153)

I Data extracted at a
timelike artificial
boundary at a finite
radius. Introduces
gauge ambiguities.

I Unphysical boundary
conditions at the
boundary of the
Cauchy domain.
Limits time evolution.

I One-sided
propagation of the
signal.

Figure: CCE schematics.

Source: C. Reisswig, N. T. Bishop, D. Pollney,

and B. Szilgyi, Phys. Rev. Lett. 103, 221101

(2009).
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Proposed method: Cauchy Characteristic Matching
(CCM): (Winicour, 2009).

I Cauchy and
Characteristic regions
evolved at once. Data
exchanged through
boundary.

I 3D, in construction.

I Present formulations
possibly ill-posed.
(e.g. PRD 102, 064035).
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Figure: CCM schematics. Credit: Alex

Vañó-Viñuales.
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Hyperboloidal Slices1,2

I Meet I +, instead of i0

⇒ signal can be directly
collected at I +.

I Overcomes all problem
encountered in the existing
methods.

I More gauge freedom than
null slices.

I Suitable for dealing with
initial-boundary value
problems when initial data is
not of compact support.

i
+

i
-

i
0

r = const

t = const

Figure: Hyperboloidal slices in
Minkowski spacetime.

1Mathematical front: Friedrich 1981-86, LeFloch et. al. 2014-19 etc.
2Numerical front: Hübner 1993, Frauendiener 1998-2006, Zenginoğlu

2005-11, Moncrief and Rinne 2009-18, Vañó-Viñuales 2015-18 etc.
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Formulating EFEs on Hyperboloidal Slices
ToDo list:

I Goal 1: Derive a well-posed formulation of the Einstein Field
Equations (EFEs) on hyperboloidal slices.

I Goal 2: Derive a discretization scheme preserving the
well-posedness for the discrete Einstein Field Equation (dEFE)
on hyperboloidal slices.

Our Approach:

I Goal 1a: Achieved by using the Dual-Foliation (DF)
formalism3 together with the Generalized Harmonic Gauge
(GHG)4.

I Goal 1b: Derive a suitable regularization scheme.

I Goal 2: Discretization scheme: Need to start from scratch,
the Linear Wave Equation.

3(Hilditch 2015, 2016)
4Fourès-Bruhat 1952, Lindblad and Rodnianski 2003, Lindblom 2006,

Gaspeŕın and Hilditch 2018 etc.
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Vacuum EFEs: Asymptotic Analysis (GBU Paper)5

E. Gasperin, SG, D. Hilditch, A. Vañó-Viñuales, CQG, Vol. 37, No. 3

I EFEs in Harmonic
Gauge (HG) give three
classes of asymptotic
equations.

I Good fields ‘g ’, Bad fields
‘b’, Ugly fields ‘u’:

�g = 0 , �b = (∂Tg)2 ,

�u =
2

R
∂Tu .

I g ∼ 1/R, b ∼ lnR/R,
u ∼ 1/R2 towards I +.
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5See also: Gaspeŕın and Hilditch, 2019, CQG 36, 195016.
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Goal 2: Summation-by-Parts (SBP) scheme
SG, A. Vañó-Viñuales, D. Hilditch, S. Bose, PRD 103, 084045

I Derived for the class of
equations

(�− F )ψ = 0 ,

all in spherical symmetry,
F = F (R), ψ = ψ(T ,R).
(one e.g. in Ma’s talk)

I Assures stability by

guaranteeing ˙̂E ≤ 0 on these
slices, for all times.

I Lax Equivalence Theorem
implies convergence at the
desired order.
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Figure: Propagation of a narrow
pulse to I +.
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Spherical GR: (Ongoing)

I Why Spherical symmetry?
I To solve the problems involving spherical symmetry, like

spherical collapse etc.
I A stepping stone to full 3d.

I In spherical symmetry, the metric has the following general
form

g =


gTT gTR 0 0
gTR gRR 0 0

0 0 gθθ 0
0 0 0 gθθ sin2 θ

 .
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Spherical GR: (Ongoing)

I Converting into a GBU structure requires the following form

g =


2eδC+ C−
C+−C−

eδ(C−+C+)
C−−C+

0 0
eδ(C−+C+)
C−−C+

2eδ

C+−C−
0 0

0 0 R̊2 0

0 0 0 R̊2 sin2 θ

 .

I Dynamical variables: C±, δ, R̊, all functions of (T ,R).
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Spherical GR:

For your eyes only!

I ‘Causal structure’ variables CR
± :

∇ξ

(
R̊2

eδκ
∇ξC

R
+

)
+ R̊∇ξH

η + R̊(∇ξR̊)∇ξC
R
+ + 8πe−δR̊2Tξξ = 0 ,

∇ξ

(
R̊2

eδκ
∇ξC

R
−

)
+ R̊∇ξH

η + R̊(∇ξR̊)∇ξC
R
− + 8πe−δR̊2Tξξ = 0 .

I ‘Determinant’ variables (eδ, R̊):

∇a

(
ξa

eδκ
∇ξδ

)
− R̊∇a

(
Ha

R̊

)
+ 2

R̊2eδκ
(∇ξR̊)(∇ξR̊)

+ 1
4eδκ3

(
∇ξC

R
−∇ξC

R
+ −∇ξC

R
+∇ξC

R
−

)
+ 16πTT = 0 ,

∇a

(
ξa

eδκ
∇ξR̊

2
)

+ 2 = 0 .
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Some preliminary results:
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Some preliminary results:
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Summary and Conclusions

I Continuum analysis:
I Using asymptotic analysis, derived a regularization scheme on

hyperboloidal slices for a ‘model system’ of equations that
mimic the asymptotic form of the Einstein Field
Equations (EFEs) in harmonic gauge (HG).

I Propose that the EFEs in HG, and in generalized harmonic
gauge (GHG) can be regularized similarly (work in progress).

I Discrete analysis:
I Derived a ‘good’ discretization scheme on hyperboloidal slices

that assures stability, and hence convergence, for a class of
linear wave equations.

I Propose that a similar scheme can improve the numerical
results for the EFEs in GHG (future plan).

I Obtained some promising results for the spherical EFEs
in GHG on hyperboloidal slices (stay tuned).
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Thank You for your Attention!!
Questions? Comments?
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Dual-Foliation Formalism

I Consider two foliations of a spacetime Xµ = (T ,X i ) and
xµ = (t, x i ), in spacelike hypersurfaces and relate the two
geometries.

I Using a 3 + 1 split of the Jacobian Jµµ = dXµ/dxµ

∂T = (J−1)µT ∂µ , ∂i = (J−1)µi ∂µ .

I Dynamical variables, or the tensor basis, remain the same.
Only the coordinates are transformed.

I An equation for a state vector u = {u1, u2, . . . , un} of the form

∂Tu = Ap ∂pu + AS ,

becomes

∂tu = Bp ∂pu + B S .
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Nonlinear Change of Variables

I Define Operator

La = (∂T )a + (∂R)a , La = (∂T )a − (∂R)a , s = lnR .

I Good Fields:

G+ = RL(Rg) , G− = RLg , G = Rg .

I Bad Fields:

B+ =RL(Rb +
1

8
sη) , B− = RLb +

1

8
sLη , B = Rb +

1

8
sη .

I Ugly Fields:

U+ = RL(R2u) , U− = R2Lu , U = R2u .

I ∂Tη = (G−)2.
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