Some ongoing Efforts for Evolving Einstein Field Equations on Hyperboloidal Slices

Shalabh Gautam ${ }^{1}$

Collaborators: Alex Vañó-Viñuales ${ }^{2}$, Edgar Gasperín ${ }^{2}$ David Hilditch ${ }^{2}$, Sukanta Bose ${ }^{3}$

${ }^{1}$ International Centre for Theoretical Sciences (ICTS), Survey No. 151, Shivakote, Hesaraghatta Hobli, Bengaluru - 560 089, India.
${ }^{2}$ CENTRA, Departamento de Física, Instituto Superior Técnico IST, Universidade de Lisboa UL, Avenida Rovisco Pais 1, 1049 Lisboa, Portugal
${ }^{3}$ Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, Pune 411007, India

CERS12 Budapest, Feb 23, 2022

Motivation

- Why Hyperboloidal slices?
- Need to include future null infinity, \mathscr{I}^{+}, in the computational domain with a well-posed formalism.
- Why \mathscr{I}^{+}?
- The only region where Gravitational Waves (GW) can be defined unambiguously.
- Useful for studying phenomena of fundamental interest, like weak cosmic censorship conjecture, black hole formation, etc.
- Existing methods like Extrapolation from Cauchy evolution, CCE and CCM introduce errors due to their limitations.

Existing method 1: Extrapolation

Figure: Extrapolation schematics.

Extrapolation Methods from Cauchy evolution:

- Boundary Errors, Extrapolation Errors.

Existing method 2: Cauchy Characteristic Extraction

 (CCE): (PRD 54, 6153)- Data extracted at a timelike artificial boundary at a finite radius. Introduces gauge ambiguities.
- Unphysical boundary conditions at the boundary of the Cauchy domain. Limits time evolution.

Figure: CCE schematics.

Source: C. Reisswig, N. T. Bishop, D. Pollney, and B. Szilgyi, Phys. Rev. Lett. 103, 221101 (2009).

Proposed method: Cauchy Characteristic Matching

 (CCM): (Winicour, 2009).- Cauchy and

Characteristic regions evolved at once. Data exchanged through boundary.

- 3D, in construction.
- Present formulations possibly ill-posed. (e.g. PRD 102, 064035).

Figure: CCM schematics. Credit: Alex Vañó-Viñuales.

Hyperboloidal Slices ${ }^{1}{ }^{2}$

- Meet \mathscr{I}^{+}, instead of \mathfrak{i}^{0} \Rightarrow signal can be directly collected at \mathscr{I}^{+}.
- Overcomes all problem encountered in the existing methods.
- More gauge freedom than null slices.
- Suitable for dealing with initial-boundary value problems when initial data is not of compact support.

Figure: Hyperboloidal slices in Minkowski spacetime.

[^0]
Formulating EFEs on Hyperboloidal Slices

ToDo list:

- Goal 1: Derive a well-posed formulation of the Einstein Field Equations (EFEs) on hyperboloidal slices.
- Goal 2: Derive a discretization scheme preserving the well-posedness for the discrete Einstein Field Equation (dEFE) on hyperboloidal slices.

Our Approach:

- Goal 1a: Achieved by using the Dual-Foliation (DF) formalism ${ }^{3}$ together with the Generalized Harmonic Gauge (GHG) ${ }^{4}$.
- Goal 1b: Derive a suitable regularization scheme.
- Goal 2: Discretization scheme: Need to start from scratch, the Linear Wave Equation.

[^1]
Vacuum EFEs: Asymptotic Analysis (GBU Paper) ${ }^{5}$

E. Gasperin, SG, D. Hilditch, A. Vañó-Viñuales, CQG, Vol. 37, No. 3

- EFEs in Harmonic

Gauge (HG) give three classes of asymptotic equations.

- Good fields ' g ', Bad fields ' b ', Ugly fields ' u ':

$$
\begin{aligned}
& \square g=0, \quad \square b=\left(\partial_{T} g\right)^{2}, \\
& \square u=\frac{2}{R} \partial_{T} u .
\end{aligned}
$$

- $g \sim 1 / R, b \sim \ln R / R$, $u \sim 1 / R^{2}$ towards \mathscr{I}^{+}.
${ }^{5}$ See also: Gasperín and Hilditch, 2019, CQG 36, 195016.

Vacuum EFEs: Asymptotic Analysis (GBU Paper)

E. Gasperin, SG, D. Hilditch, A. Vañó-Viñuales, CQG, Vol. 37, No. 3

- EFEs in Harmonic

Gauge (HG) give three classes of asymptotic equations.

- Good fields ' g ', Bad fields ' b ', Ugly fields ' u ':

$$
\begin{aligned}
& \square g=0, \quad \square b=\left(\partial_{T} g\right)^{2}, \\
& \square u=\frac{2}{R} \partial_{T} u .
\end{aligned}
$$

- $g \sim 1 / R, b \sim \ln R / R$, $u \sim 1 / R^{2}$ towards \mathscr{I}^{+}.

Vacuum EFEs: Asymptotic Analysis (GBU Paper)

E. Gasperin, SG, D. Hilditch, A. Vañó-Viñuales, CQG, Vol. 37, No. 3

- EFEs in Harmonic

Gauge (HG) give three classes of asymptotic equations.

- Good fields ' g ', Bad fields ' b ', Ugly fields ' u ':

$$
\begin{aligned}
& \square g=0, \quad \square b=\left(\partial_{T} g\right)^{2}, \\
& \square u=\frac{2}{R} \partial_{T} u .
\end{aligned}
$$

- $g \sim 1 / R, b \sim \ln R / R$, $u \sim 1 / R^{2}$ towards \mathscr{I}^{+}.

Goal 2: Summation-by-Parts (SBP) scheme

 SG, A. Vañó-Viñuales, D. Hilditch, S. Bose, PRD 103, 084045- Derived for the class of equations

$$
(\square-F) \psi=0,
$$

all in spherical symmetry,
$F=F(R), \psi=\psi(T, R)$. (one e.g. in Ma's talk)

- Assures stability by guaranteeing $\dot{\hat{E}} \leq 0$ on these slices, for all times.
- Lax Equivalence Theorem implies convergence at the desired order.

Figure: Propagation of a narrow pulse to \mathscr{I}^{+}.

Goal 2: Summation-by-Parts (SBP) scheme

SG, A. Vañó-Viñuales, D. Hilditch, S. Bose, PRD 103, 084045

- Derived for the class of equations

$$
(\square-F) \psi=0,
$$

all in spherical symmetry
$F=F(R), \psi=\psi(T, R)$. (one e.g. in Ma's talk)

- Assures stability by guaranteeing $\dot{\hat{E}} \leq 0$ on these slices, for all times.
- Lax Equivalence Theorem implies convergence at the desired order.

Figure: Discrete energy vs continuum energy.

Goal 2: Summation-by-Parts (SBP) scheme

SG, A. Vañó-Viñuales, D. Hilditch, S. Bose, PRD 103, 084045

- Derived for the class of equations

$$
(\square-F) \psi=0,
$$

all in spherical symmetry
$F=F(R), \psi=\psi(T, R)$. (one e.g. in Ma's talk)

- Assures stability by guaranteeing $\dot{\hat{E}} \leq 0$ on these slices, for all times.
- Lax Equivalence Theorem implies convergence at the desired order.

Energy Norm Convergence

Figure: Convergence order in the energy norm.

Goal 2: Summation-by-Parts (SBP) scheme

 SG, A. Vañó-Viñuales, D. Hilditch, S. Bose, PRD 103, 084045- Derived for the class of equations

$$
(\square-F) \psi=0,
$$

all in spherical symmetry
$F=F(R), \psi=\psi(T, R)$. (one e.g. in Ma's talk)

- Assures stability by guaranteeing $\dot{\hat{E}} \leq 0$ on these slices, for all times.
- Lax Equivalence Theorem implies convergence at the desired order.

Spherical GR: (Ongoing)

- Why Spherical symmetry?
- To solve the problems involving spherical symmetry, like spherical collapse etc.
- A stepping stone to full 3d.
- In spherical symmetry, the metric has the following general form

$$
\mathbf{g}=\left(\begin{array}{cccc}
g_{T T} & g_{T R} & 0 & 0 \\
g_{T R} & g_{R R} & 0 & 0 \\
0 & 0 & g_{\theta \theta} & 0 \\
0 & 0 & 0 & g_{\theta \theta} \sin ^{2} \theta
\end{array}\right)
$$

Spherical GR: (Ongoing)

- Converting into a GBU structure requires the following form

$$
\mathbf{g}=\left(\begin{array}{cccc}
\frac{2 e^{\delta} C_{+} C_{-}}{C_{-}-C_{-}} & \frac{e^{\delta}\left(C_{-}+C_{+}\right)}{C_{-}-C_{+}} & 0 & 0 \\
\frac{e^{\delta}\left(C_{-}+C_{+}\right)}{C_{-} C_{+}} & \frac{2 e^{\delta}}{C_{+}-C_{-}} & 0 & 0 \\
0 & 0 & \AA^{2} & 0 \\
0 & 0 & 0 & \stackrel{R}{ }^{2} \sin ^{2} \theta
\end{array}\right)
$$

- Dynamical variables: $C_{ \pm}, \delta, \stackrel{R}{R}$, all functions of (T, R).

Spherical GR:

For your eyes only!

- 'Causal structure' variables $C_{ \pm}^{R}$:

$$
\begin{aligned}
& \nabla_{\xi}\left(\frac{\dot{R}^{2}}{e^{\delta} \kappa} \nabla_{\underline{\xi}} C_{+}^{R}\right)+\dot{R} \nabla_{\xi} H^{\eta}+\dot{R}\left(\nabla_{\xi} \dot{R}\right) \nabla_{\xi} C_{+}^{R}+8 \pi e^{-\delta} \dot{R}^{2} T_{\xi \xi}=0, \\
& \nabla_{\underline{\xi}}\left(\frac{\dot{R}^{2}}{e^{\delta} \kappa} \nabla_{\xi} C_{-}^{R}\right)+\dot{R} \nabla_{\underline{\xi}} H^{\eta}+\dot{R}\left(\nabla_{\underline{\xi}} \dot{R}\right) \nabla_{\underline{\xi}} C_{-}^{R}+8 \pi e^{-\delta} \dot{R}^{2} T_{\underline{\xi \xi}}=0
\end{aligned}
$$

- 'Determinant' variables $\left(e^{\delta}, R\right.$) :

$$
\begin{aligned}
& \nabla_{a}\left(\frac{\xi^{a}}{e^{\delta} \kappa} \nabla_{\underline{\xi}} \delta\right)-\stackrel{\circ}{R} \nabla_{a}\left(\frac{H^{a}}{\dot{R}}\right)+\frac{2}{\dot{R}^{2} e^{\delta} \kappa}\left(\nabla_{\xi} \stackrel{\circ}{R}\right)\left(\nabla_{\underline{\xi}} \stackrel{\circ}{R}\right) \\
& +\frac{1}{4 e^{\delta} \kappa^{3}}\left(\nabla_{\underline{\xi}} C_{-}^{R} \nabla_{\xi} C_{+}^{R}-\nabla_{\underline{\xi}} C_{+}^{R} \nabla_{\xi} C_{-}^{R}\right)+16 \pi T_{T}=0, \\
& \nabla_{a}\left(\frac{\xi^{a}}{e^{\delta} \kappa} \nabla_{\underline{\xi}} \dot{R}^{2}\right)+2=0 .
\end{aligned}
$$

Some preliminary results:

Some preliminary results:

Summary and Conclusions

- Continuum analysis:
- Using asymptotic analysis, derived a regularization scheme on hyperboloidal slices for a 'model system' of equations that mimic the asymptotic form of the Einstein Field Equations (EFEs) in harmonic gauge (HG).
- Propose that the EFEs in HG, and in generalized harmonic gauge (GHG) can be regularized similarly (work in progress).
- Discrete analysis:
- Derived a 'good' discretization scheme on hyperboloidal slices that assures stability, and hence convergence, for a class of linear wave equations.
- Propose that a similar scheme can improve the numerical results for the EFEs in GHG (future plan).
- Obtained some promising results for the spherical EFEs in GHG on hyperboloidal slices (stay tuned).

Thank You for your Attention!! Questions? Comments?

References

- Friedrich H., 1981, Proc. R. Soc. A 375, 169-84
- Friedrich H., 1981, Proc. R. Soc. A 378, 401-21
- Zenginoglu A., 2008, CQG 25, 195025
- A. Zenginoglu, PRD 83, 127502 (2011)
- Frauendiener J., 2004, Liv. Rev. Rel. 7
- Hilditch D. 2015, arXiv:1509.02071
- Hilditch D. et. al. 2018, CQG 35, 055003
- Lindblom L. et. al., 2006, CQG 23, S447-62
- Vañó-Viñuales A. et. al., 2015, CQG 32, 175010
- Vañó-Viñuales A. et. al., 2018, CQG 35, 045014
- Vañó-Viñuales A. 2015, PhD Thesis.
- C. Gundlach et. al. CQG 30, 145003 (2013)

Dual-Foliation Formalism

- Consider two foliations of a spacetime $X^{\underline{\mu}}=\left(T, X^{\underline{i}}\right)$ and $x^{\mu}=\left(t, x^{i}\right)$, in spacelike hypersurfaces and relate the two geometries.
- Using a $3+1$ split of the Jacobian $J_{\underline{\mu}}^{\mu}=d X^{\underline{\mu}} / d x^{\mu}$

$$
\partial_{T}=\left(J^{-1}\right)_{\underline{I}}^{\mu} \partial_{\mu}, \quad \partial_{\underline{i}}=\left(J^{-1}\right)_{\underline{i}}^{\mu} \partial_{\mu} .
$$

- Dynamical variables, or the tensor basis, remain the same. Only the coordinates are transformed.
- An equation for a state vector $\mathbf{u}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of the form

$$
\partial_{T} \mathbf{u}=\mathbf{A}^{\underline{p}} \partial_{\underline{p}} \mathbf{u}+A \mathbf{S}
$$

becomes

$$
\partial_{t} \mathbf{u}=\mathbf{B}^{p} \partial_{p} \mathbf{u}+B \mathbf{S}
$$

Nonlinear Change of Variables

- Define Operator

$$
L^{a}=\left(\partial_{T}\right)^{a}+\left(\partial_{R}\right)^{a}, \quad \underline{L}^{a}=\left(\partial_{T}\right)^{a}-\left(\partial_{R}\right)^{a}, \quad s=\ln R .
$$

- Good Fields:

$$
G^{+}=R L(R g), \quad G^{-}=R \underline{L} g, \quad G=R g .
$$

- Bad Fields:

$$
B^{+}=R L\left(R b+\frac{1}{8} s \eta\right), \quad B^{-}=R \underline{L} b+\frac{1}{8} s \underline{L} \eta, \quad B=R b+\frac{1}{8} s \eta .
$$

- Ugly Fields:

$$
U^{+}=R L\left(R^{2} u\right), \quad U^{-}=R^{2} \underline{L} u, \quad U=R^{2} u
$$

- $\partial_{T} \eta=\left(G^{-}\right)^{2}$.

[^0]: ${ }^{1}$ Mathematical front: Friedrich 1981-86, LeFloch et. al. 2014-19 etc.
 ${ }^{2}$ Numerical front: Hübner 1993, Frauendiener 1998-2006, Zenginoğlu 2005-11, Moncrief and Rinne 2009-18, Vañó-Viñuales 2015-18 etc.

[^1]: ${ }^{3}$ (Hilditch 2015, 2016)
 ${ }^{4}$ Fourès-Bruhat 1952, Lindblad and Rodnianski 2003, Lindblom 2006, Gasperín and Hilditch 2018 etc.

