Interferometry of Entangled Quantum States of Light in Curved Space-Time

Thomas B. Mieling February 23, 2021

Work done in collaboration with Christopher Hilweg.

TM is a recipient of a DOC Fellowship of the Austrian Academy of Sciences.

Context: quantum physics in the presence of external gravitational fields

Ongoing efforts to demonstrate gravitationally-induced quantum interference

- Matter-wave interferometry (Colella *et al.* 1975; Kasevich & Chu 1992; Sorrentino *et al.* 2012) Newtonian gravity suffices
- Optical interferometry (Zych *et al.* 2012; Hilweg *et al.* 2017) beyond Newtonian desciption, but insensitve to gravity gradients

So far: no experimental realisation of quantum interference, where the phase shift is explicable only using general relativity

Schematics

Single Photons

Single Photons

Single Photons

Photon Pairs

Photon Pairs

Photon Pairs

Setup

Static space-time metric

 $\mathbf{g} = -c^2 N(\boldsymbol{x})^2 \mathrm{d}t^2 + h_{ij}(\boldsymbol{x}) \mathrm{d}x^i \mathrm{d}x^j$

Riemann curvature

$$\mathbf{R}_{0i0j} = c^2 N \nabla_i \nabla_j N \qquad \qquad \mathbf{R}_{ijkl} = R_{ijkl}$$

Gordon's optical metric

$$\tilde{\mathbf{g}} = -c^2 (N(\boldsymbol{x})/n(\boldsymbol{x}))^2 \mathrm{d}t^2 + h_{ij}(\boldsymbol{x}) \mathrm{d}x^i \mathrm{d}x^j$$

Lagrangian

 $L[F] = -\frac{1}{4}\tilde{\mathbf{g}}^{ab}\tilde{\mathbf{g}}^{cd}F_{ac}F_{bd} \qquad \qquad L[\varphi] = -\frac{1}{2}\tilde{\mathbf{g}}^{ab}(\nabla_a\varphi)(\nabla_b\varphi)$

Setup

Neglecting polarisation degrees of freedom, consider scalar quantum field operator

$$\hat{\varphi}(t, \boldsymbol{x}) = \int \frac{\mathrm{d}\omega}{\sqrt{2\omega}} [\hat{a}(\omega)e^{-i\omega t}u_{\omega}(\boldsymbol{x}) + \hat{a}^{\dagger}(\omega)e^{+i\omega t}\bar{u}_{\omega}(\boldsymbol{x})]$$

Mode functions satisfy

$$(n/N)\Delta(u_{\omega}N/n) + (n\omega/cN)^2u_{\omega} = 0$$

Normalisation gives standard commutation relation

$$[a(\omega), a^{\dagger}(\omega')] = \delta(\omega - \omega')$$

Vacuum state $|0\rangle$

$$\hat{a}(\omega) \left| 0 \right\rangle = 0$$

Phases and Beam Splitters

First approximation: eikonal equation

$$\phi(\boldsymbol{x}_B) = \phi(\boldsymbol{x}_A) + \int_{\gamma} \frac{n\omega}{cN} \hat{k}_i \mathrm{d}x^i$$

Beam splitter coupling at x_* :

$$\begin{aligned} \hat{\varphi}_3(t, \boldsymbol{x}_*) &= \mathcal{T}\hat{\varphi}_1(t, \boldsymbol{x}_*) + \mathcal{R}\hat{\varphi}_2(t, \boldsymbol{x}_*) \\ \hat{\varphi}_4(t, \boldsymbol{x}_*) &= \mathcal{R}\hat{\varphi}_1(t, \boldsymbol{x}_*) + \mathcal{T}\hat{\varphi}_2(t, \boldsymbol{x}_*) \\ |\mathcal{T}|^2 + |\mathcal{R}|^2 &= 1 \quad \bar{\mathcal{T}}\mathcal{R} + \bar{\mathcal{R}}\mathcal{T} = 0 \end{aligned}$$

$$\begin{pmatrix} \hat{a}_1^{\dagger}(\omega)\bar{u}_{1,\omega}(\boldsymbol{x}_*)\\ \hat{a}_2^{\dagger}(\omega)\bar{u}_{2,\omega}(\boldsymbol{x}_*) \end{pmatrix} = \begin{pmatrix} \mathcal{T} & \mathcal{R}\\ \mathcal{R} & \mathcal{T} \end{pmatrix} \begin{pmatrix} \hat{a}_3^{\dagger}(\omega)\bar{u}_{3,\omega}(\boldsymbol{x}_*)\\ \hat{a}_4^{\dagger}(\omega)\bar{u}_{4,\omega}(\boldsymbol{x}_*) \end{pmatrix}$$

The mode-couplings can be realised by unitary transformations \hat{U}_{BS} and \hat{U}_{ϕ} :

$$\hat{U}_{\rm BS}\hat{a}^{\dagger}\hat{U}_{\rm BS}^{\dagger} = \frac{1}{\sqrt{2}}(a^{\dagger}+ib^{\dagger}) \underbrace{\begin{array}{c} \mathcal{T} = 1/\sqrt{2} \\ \mathcal{R} = i/\sqrt{2} \end{array}}_{\mathcal{R} = i/\sqrt{2}} \hat{U}_{\rm BS}\hat{b}^{\dagger}\hat{U}_{\rm BS}^{\dagger} = \frac{1}{\sqrt{2}}(\hat{b}^{\dagger}+i\hat{a}^{\dagger})$$

$$\hat{U}_{\phi}\hat{a}^{\dagger}\hat{U}_{\phi}^{\dagger} = a^{\dagger}e^{-i\phi'} \qquad \qquad \hat{U}_{\phi}\hat{b}^{\dagger}\hat{U}_{\phi}^{\dagger} = \hat{b}^{\dagger}e^{-i\phi''}$$

Consider single modes and symmetric beam splitters

$$\begin{split} |\psi\rangle &= |1,1\rangle = a^{\dagger}b^{\dagger} |0\rangle \\ \hat{U}_{\text{BS}} |\psi\rangle &= \frac{i}{2}(a^{\dagger}a^{\dagger} + b^{\dagger}b^{\dagger}) |0\rangle = \frac{i}{\sqrt{2}}(|2,0\rangle + |0,2\rangle) \\ \hat{U}_{\phi}\hat{U}_{\text{BS}} |\psi\rangle &= \frac{i}{\sqrt{2}}(e^{-2i\phi'} |2,0\rangle + e^{-2i\phi''} |0,2\rangle) \\ \hat{U}_{\text{BS}}\hat{U}_{\phi}\hat{U}_{\text{BS}} |\psi\rangle &= \frac{i}{2\sqrt{2}}(e^{-2i\phi'} - e^{-2i\phi''})(|2,0\rangle - |0,2\rangle) - \frac{1}{2}(e^{-2i\phi'} + e^{-2i\phi''}) |1,1\rangle \end{split}$$

Probability of finding both photons in the same mode

$$p = 2 \left| \frac{i}{2\sqrt{2}} (e^{2i\phi'} - e^{2i\phi''}) \right|^2 = \frac{1}{2} (1 - \cos(2\Delta\phi))$$

Compared to coherent states or single photons: doubled fringe frequency

The intermediate state $\frac{1}{\sqrt{2}}(|2,0\rangle + |0,2\rangle)$ is a special case of a maximally path-entangled "NOON" state $\frac{1}{\sqrt{2}}(|N,0\rangle + |0,N\rangle)$.

Previous proposals for NOON-state interferometry: redshift (Anastopoulos & Hu 2021), frame dragging (Brady & Haldar 2021), PPN parameters (Rivera-Tapia *et al.* 2021) assumed linear dependence of $\Delta \phi \propto \Delta h$.

Linear dependence $\Delta N \propto \Delta h$ is explicable using the weak equivalence principle: $N = 1 + gz/c^2$ and $h_{ij} = \delta_{ij}$ is flat space-time.

Excess probability

$$\delta p = p - \tilde{p}$$

$$-GM_{\oplus}/(R_{\oplus} + h) \text{ const.} + gh$$
potential potential

Figure 1: Excess probability, δp , for single photons and NOON states with wavelength $\lambda = 1500$ nm, spectral with $\delta \lambda = 1$ nm, and arm length l = 100 km.

Optical NOON-state interferometry experiments at sattelite altitudes ...

- are beyond a Newtonian description of gravity
- are sensitive to gravity gradients
- simultaneously demonstrate signatures of quantum physics and general relativity

Anastopoulos, C. & Hu, B.-L. *Relativistic Particle Motion and Quantum Optics in a Weak Gravitational Field.* June 2021. arXiv: 2106.12514 [quant-ph].

Brady, A. J. & Haldar, S. Frame dragging and the Hong-Ou-Mandel dip: Gravitational effects in multiphoton interference. *Physical Review Research* **3**, 023024. doi:10.1103/PhysRevResearch.3.023024.arXiv: 2006.04221 [quant-ph] (Apr. 2021).

Colella, R., Overhauser, A. W. & Werner, S. A. Observation of Gravitationally Induced Quantum Interference. *Phys. Rev. Lett.* **34**, 1472–1474. doi:10.1103/PhysRevLett.34.1472 (June 1975).

Hilweg, C. et al. Gravitationally induced phase shift on a single photon. New Journal of Physics **19**, 033028. doi:10.1088/1367-2630/aa638f.arXiv: 1612.03612 [quant-ph] (Mar. 2017).

Kasevich, M. & Chu, S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. *Applied Physics B: Lasers and Optics* **54**, 321–332. doi:10.1007/BF00325375 (May 1992).

Rivera-Tapia, M., Yáñez Reyes, M. I., Delgado, A. & Rubilar, G. *Outperforming classical* estimation of Post-Newtonian parameters of Earth's gravitational field using quantum metrology. Jan. 2021. arXiv: 2101.12126 [gr-qc].

Sorrentino, F. *et al.* Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer. *Applied Physics Letters* **101**, 114106. doi:10.1063/1.4751112 (Sept. 2012).

Zych, M., Costa, F., Pikovski, I., Ralph, T. C. & Brukner, Č. General relativistic effects in quantum interference of photons. *Classical and Quantum Gravity* **29**, 224010. doi:10.1088/0264-9381/29/22/224010. arXiv: 1206.0965 [quant-ph] (Nov. 2012).