Staticity and regularity for spin-2 fields near spatial infinity on flat spacetime

Edgar Gasperín

Class. Quantum Grav. 39, 015014. (work in collaboration with Juan A. Valiente Kroon)

Instituto Superior Técnico, U. Lisboa

CERS12 - Central European Relativity Seminar XII

edgar.gasperin@tecnico.ulisboa.pt

Online 23 Feb 2022.

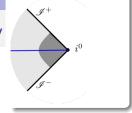
イロト イポト イヨト イヨト

Motivation: the problem at spatial infinity

Peeling and the problem at spatial infinity i^0

- Penrose's conformal approach. $(\tilde{\mathcal{M}}, \tilde{g}) =$ physical spacetime and $(\mathcal{M}, g) =$ "unphysical" spacetime $g = \Theta^2 \tilde{g}$
- Conformal structure degenerates at spatial infinity i⁰ (Penrose, Friedrich).
- Classical Penrose's Peeling theorem (n = 0, 1, 2, 3, 4, "NP-gauge") $\psi_n = O(\tilde{r}^{-5+n})$
- Time-Sym ID \implies formal expansions close to i^0 [Friedrich 98, G. & Valiente Kroon 17]

 $\psi_{0,1,2} = \mathcal{O}(\tilde{r}^{-3}\ln(\tilde{r})), \ \psi_3 = \mathcal{O}(\tilde{r}^{-2}), \ \psi_4 = \mathcal{O}(\tilde{r}^{-1})$



Connection to i^0

- CEFE-logs origin $\rightsquigarrow i^0$.
- Regularity condition at the level of initial data!

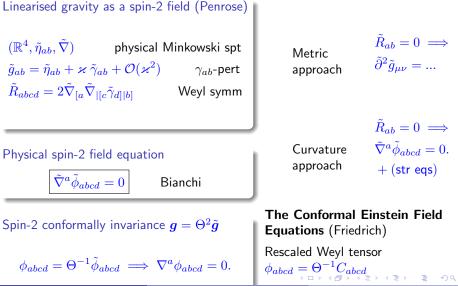
Other polyhm. exps

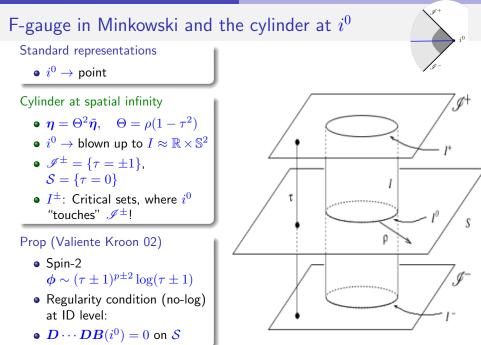
• Winicour, Chrusciel, Duarte et al ...

・ 戸 ・ ・ ヨ ・ ・ 日 ・ ・

э

Spin-2 fields as toy models for the gravitational field





A staticity condition

Physical staticity field \tilde{Z}

- $(\mathbb{R}^4, \tilde{\pmb{\eta}}, \tilde{\nabla})$ physical Minkowski st.
- $\tilde{\nabla}^a \tilde{\phi}_{abcd} = 0$ physical spin-2 eq.
- $\tilde{\boldsymbol{\xi}} = \boldsymbol{\partial}_{\tilde{t}}$ timelike KV.
- "staticity zero-quantity"

 $\tilde{Z}_{abcd} \equiv \mathcal{L}_{\tilde{\xi}} \tilde{\phi}_{abcd}$

• Staticity notion:

 $\tilde{\phi}$ is static $\iff \tilde{Z} = 0$

\tilde{Z} propagates

- $\tilde{\nabla}^a \tilde{Z}_{abcd} = 0$
- Symmetric Hyperbolic. Uniqueness. Zero-quantity propagates:

•
$$\tilde{\boldsymbol{Z}}|_{\mathcal{S}} = 0 \implies \tilde{\boldsymbol{Z}} = 0$$

ID-Staticity condition

• ID-physical-staticity cond

 $\tilde{Z}_{abcd}|_{\mathcal{S}}=0$

• Translate to the unphysical $(\mathcal{M}, \boldsymbol{g}) \rightsquigarrow i^0$ -cylinder.

A staticity condition

Unphysical picture $(\mathcal{M}, \boldsymbol{g} = \Theta^2 \tilde{\boldsymbol{g}})$

•
$$\tilde{\phi}_{abcd} = \Theta^{-1} \phi_{abcd}$$

$$\nabla^a \phi_{abcd} = 0$$

•
$$\tilde{\nabla}_{(a}\tilde{\xi}_{b)} = 0$$
 KV \implies CKV:

•
$$\xi^a = \tilde{\xi}^a$$
, $\xi_a = \Theta^{-2} \tilde{\xi}_a$

$$\nabla_{(a}\xi_{b)} - \frac{1}{4}g_{ab}\nabla_{c}\xi^{c} = 0$$

•
$$\boldsymbol{\xi} = \Theta \boldsymbol{\partial}_{\tau} + 2\rho^2 \tau \boldsymbol{\partial}_{\rho}$$

•
$$Z_{abcd} \equiv \Theta^{-2} \tilde{Z}_{abcd}$$

Spinorialisation

$$\begin{aligned} Z_{ABCD} &= \Theta \nabla_{\boldsymbol{\xi}} \phi_{ABCD} + \phi_{ABCD} \nabla_{\boldsymbol{\xi}} \Theta \\ &+ 2 \phi_{Q(ABC} \nabla_{D)Q'} \xi^{QQ'}. \end{aligned}$$

- 1+3 spinor split adapted to ∂_{τ}
- Use Spin-2 and CKV eqs to remove ders in the $\tau(=\ell+n)$ direction.

イロト イヨト イヨト イヨト

•
$$|Z_{ABCD}|_{\mathcal{S}} = \sqrt{2}\Omega B_{ABCD}$$

Main result

Theorem (G. & Valiente Kroon 21)

A necessary and sufficient condition for a spin-2 field ϕ_{ABCD} over (\mathcal{M}, η) to be static is that it satisfies the conformally invariant condition

 $B_{ABCD} = 0$ on S.

Corollary (G. & Valiente Kroon 21)

Static initial data for the spin-2 field gives rise to a solution ϕ_{ABCD} that extends analytically to the the critical sets \mathcal{I}^{\pm} . In particular, the solution is smooth at \mathscr{I}^{\pm}

Corollary (G. & Valiente Kroon 2021)

Initial data satisfying the regularity condition does not correspond, in general, to static initial data for the spin-2 field ϕ_{ABCD} in a neighbourhood of i^0 .

イロト イポト イヨト イヨト