# Necessary Conditions for the Existence of the Carter Constant in a General Axially Symmetric Stationary Spacetime in Plasma and Applications 

## B. Bezděková ${ }^{1}$, V. Perlick ${ }^{2}$, J. Bičák ${ }^{1}$

${ }^{1}$ Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
${ }^{2}$ ZARM, University of Bremen, Bremen, Germany

It is useful to apply the Hamiltonian formalism with Hamiltonian in the form ${ }^{1}$

$$
\mathcal{H}\left(x^{\alpha}, p_{\alpha}\right)=\frac{1}{2}\left[g^{\beta \delta} p_{\beta} p_{\delta}+\omega_{p l}^{2}\left(x^{\alpha}\right)\right],
$$

where $g^{\beta \delta}$ is the spacetime metric, $x^{\alpha}$ are the spacetime coordinates, $p_{\alpha}$ denotes the wave vector, and

$$
\omega_{p l}^{2}=\frac{e^{2} N(x)}{\epsilon_{0} m_{e}}
$$

is the plasma electron frequency. To propagate through a medium, wave frequency $\omega\left(x^{\alpha}\right)$ must obey $\omega\left(x^{\alpha}\right)>\omega_{p l}\left(x^{\alpha}\right)$.

Hamilton equations of motion are

$$
\frac{d x^{\alpha}}{d \lambda}=\frac{\partial \mathcal{H}}{\partial p_{\alpha}}, \quad \frac{d p_{\alpha}}{d \lambda}=-\frac{\partial \mathcal{H}}{\partial x^{\alpha}} .
$$

An arbitrary axially symmetric stationary object can be described by the metric in a general form

$$
\begin{aligned}
d s^{2}= & -A\left(x_{1}, x_{2}\right) d k_{1}^{2}+B\left(x_{1}, x_{2}\right) d x_{1}^{2}+2 P\left(x_{1}, x_{2}\right) d k_{1} d k_{2}+ \\
& +C\left(x_{1}, x_{2}\right) d k_{2}^{2}+D\left(x_{1}, x_{2}\right) d x_{2}^{2}
\end{aligned}
$$

$B\left(x_{1}, x_{2}\right), D\left(x_{1}, x_{2}\right)$ - positive functions of $x_{1}$ and $x_{2}$, $A\left(x_{1}, x_{2}\right), C\left(x_{1}, x_{2}\right)$, and $P\left(x_{1}, x_{2}\right)$ - generally of an arbitrary sign
Notice, e.g. dependence on angular momentum $a$.
Let us further assume that plasma frequency $\omega_{p l}^{2}\left(x^{\alpha}\right)$ is solely function of coordinates $x_{1}$ and $x_{2}$, i.e. $\omega_{p l}^{2}\left(x_{1}, x_{2}\right)$.

From the equations of motion one gets

$$
\begin{array}{lll}
\frac{\partial \mathcal{H}}{\partial k_{1}}=0 \quad & \rightarrow & p_{k_{1}} \\
\frac{\partial \mathcal{H}}{\partial k_{2}}=0 \quad & \rightarrow \quad p_{k_{2}} .
\end{array}
$$

Let us further denote $p_{k_{1}} \equiv-\omega_{0}, p_{k_{2}} \equiv p_{\kappa}$. It holds

$$
\mathcal{H}\left(x^{\alpha}, p_{\alpha}\right)=0 .
$$

To get a closed (separated) system of equations, one more parameter is needed - Carter constant $\mathcal{K}$.
$\mathcal{H}\left(x^{\alpha}, p_{\alpha}\right) \rightarrow \mathcal{H}\left(x^{\alpha}, \frac{\partial S}{\partial x^{\alpha}}\right)$
Assume $S$ can be separated as follows:

$$
S\left(k_{1}, k_{2}, x_{1}, x_{2}\right)=-\omega_{0} k_{1}+p_{\kappa} k_{2}+S_{x_{1}}\left(x_{1}\right)+S_{x_{2}}\left(x_{2}\right)
$$

Then, the Hamilton-Jacobi equation takes the form
$0=\frac{1}{2}\left[\frac{1}{B\left(x_{1}, x_{2}\right)}\left(\frac{\partial S_{x_{1}}}{\partial x_{1}}\right)^{2}+\frac{1}{D\left(x_{1}, x_{2}\right)}\left(\frac{\partial S_{x_{2}}}{\partial x_{2}}\right)^{2}+\omega_{p l}^{2}\left(x_{1}, x_{2}\right)+\right.$

$$
\begin{equation*}
\left.+\frac{p_{\kappa}^{2} A\left(x_{1}, x_{2}\right)-\omega_{0}^{2} C\left(x_{1}, x_{2}\right)-2 \omega_{0} p_{\kappa} P\left(x_{1}, x_{2}\right)}{A\left(x_{1}, x_{2}\right) C\left(x_{1}, x_{2}\right)+P^{2}\left(x_{1}, x_{2}\right)}\right] . \tag{1}
\end{equation*}
$$

To obtain terms associated with partial derivatives of $S_{x_{1}}, S_{x_{2}}$ solely as functions of $x_{1}$ and $x_{2}$, let us multiply (1) by an arbitrary function $F\left(x_{1}, x_{2}\right)$ to get

$$
\begin{aligned}
0 & =\frac{1}{2}\left[\frac{F\left(x_{1}, x_{2}\right)}{B\left(x_{1}, x_{2}\right)}\left(\frac{\partial S_{x_{1}}}{\partial x_{1}}\right)^{2}+\frac{F\left(x_{1}, x_{2}\right)}{D\left(x_{1}, x_{2}\right)}\left(\frac{\partial S_{x_{2}}}{\partial x_{2}}\right)^{2}+\right. \\
& +\frac{F\left(x_{1}, x_{2}\right)\left(p_{\kappa}^{2} A\left(x_{1}, x_{2}\right)-\omega_{0}^{2} C\left(x_{1}, x_{2}\right)-2 \omega_{0} p_{\kappa} P\left(x_{1}, x_{2}\right)\right)}{A\left(x_{1}, x_{2}\right) C\left(x_{1}, x_{2}\right)+P^{2}\left(x_{1}, x_{2}\right)}+ \\
& \left.+F\left(x_{1}, x_{2}\right) \omega_{p l}^{2}\left(x_{1}, x_{2}\right)\right]
\end{aligned}
$$

Function $F\left(x_{1}, x_{2}\right)$ has to be such that

$$
\begin{aligned}
\frac{F\left(x_{1}, x_{2}\right)}{B\left(x_{1}, x_{2}\right)} & \equiv \mathcal{F}\left(x_{1}\right) \wedge \frac{F\left(x_{1}, x_{2}\right)}{D\left(x_{1}, x_{2}\right)} \equiv \mathcal{G}\left(x_{2}\right) \\
& \rightarrow \frac{B\left(x_{1}, x_{2}\right)}{D\left(x_{1}, x_{2}\right)}=\frac{\mathcal{G}\left(x_{2}\right)}{\mathcal{F}\left(x_{1}\right)}
\end{aligned}
$$

Moreover,

$$
\frac{F\left(x_{1}, x_{2}\right)}{A\left(x_{1}, x_{2}\right) C\left(x_{1}, x_{2}\right)+P^{2}\left(x_{1}, x_{2}\right)} X\left(x_{1}, x_{2}\right)=X_{x_{1}}+X_{x_{2}},
$$

where $X\left(x_{1}, x_{2}\right)$ stands for $A\left(x_{1}, x_{2}\right), C\left(x_{1}, x_{2}\right)$, and $P\left(x_{1}, x_{2}\right)$, and

$$
\omega_{p l}^{2}\left(x_{1}, x_{2}\right) \equiv \frac{f_{x_{1}}\left(x_{1}\right)+f_{x_{2}}\left(x_{2}\right)}{F\left(x_{1}, x_{2}\right)}
$$

Using the new forms of corresponding terms gives

$$
\begin{gathered}
\mathcal{F}\left(x_{1}\right)\left(\frac{\partial S_{x_{1}}}{\partial x_{1}}\right)^{2}+f_{x_{1}}\left(x_{1}\right)+p_{\kappa}^{2} A_{x_{1}}-\omega_{0}^{2} C_{x_{1}}-2 \omega_{0} p_{\kappa} P_{x_{1}} \\
=-\mathcal{G}\left(x_{2}\right)\left(\frac{\partial S_{x_{2}}}{\partial x_{2}}\right)^{2}-f_{x_{2}}\left(x_{2}\right)-p_{\kappa}^{2} A_{x_{2}}+\omega_{0}^{2} C_{x_{2}}+2 \omega_{0} p_{\kappa} P_{x_{2}} \equiv-\mathcal{K} .
\end{gathered}
$$

## Photon Region $1 / 3$

Starting from the Hamilton equation

$$
\dot{x}_{1}=\frac{\partial \mathcal{H}}{\partial p_{x_{1}}}=\frac{p_{x_{1}}}{B\left(x_{1}, x_{2}\right)},
$$

we find

$$
B^{2}\left(x_{1}, x_{2}\right) \mathcal{F}\left(x_{1}\right) \dot{x}_{1}^{2}=-\mathcal{K}-f_{x_{1}}-p_{\kappa}^{2} A_{x_{1}}+\omega_{0}^{2} C_{x_{1}}+2 \omega_{0} p_{\kappa} P_{x_{1}} \equiv R\left(x_{1}\right)
$$

Condition $\dot{x}_{1}=\ddot{x}_{1}=0$ leads to

$$
\begin{gathered}
p_{\kappa}=\frac{\omega_{0} P_{x_{1}}^{\prime}}{A_{x_{1}}^{\prime}}\left(1 \pm \sqrt{1-\frac{A_{x_{1}}^{\prime}}{P_{x_{1}}^{\prime 2}}\left(\frac{f_{x_{1}}^{\prime}}{\omega_{0}^{2}}-C_{x_{1}}^{\prime}\right)}\right) \\
\mathcal{K}=\frac{A_{x_{1}}}{A_{x_{1}}^{\prime}}\left(f_{x_{1}}^{\prime}-\omega_{0}^{2} C_{x_{1}}^{\prime}\right)+\omega_{0}^{2} C_{x_{1}}+2 \frac{\omega_{0}^{2} P_{x_{1}}^{\prime}}{A_{x_{1}}^{\prime}}\left(P_{x_{1}}-\frac{A_{x_{1}} P_{x_{1}}^{\prime}}{A_{x_{1}}^{\prime}}\right) \times \\
\left(1 \pm \sqrt{1-\frac{A_{x_{1}}^{\prime}}{P_{x_{1}}^{\prime 2}}\left(\frac{f_{x_{1}}^{\prime}}{\omega_{0}^{2}}-C_{x_{1}}^{\prime}\right)}\right)-f_{x_{1}} .
\end{gathered}
$$

From

$$
\begin{aligned}
\dot{x}_{2} & =\frac{\partial \mathcal{H}}{\partial p_{x_{2}}}=\frac{p_{x_{2}}}{D\left(x_{1}, x_{2}\right)} \\
\rightarrow \quad D^{2}\left(x_{1}, x_{2}\right) \mathcal{G}\left(x_{2}\right) \dot{x}_{2}^{2} & =\mathcal{K}-f_{x_{2}}-p_{\kappa}^{2} A_{x_{2}}+\omega_{0}^{2} C_{x_{2}}+2 \omega_{0} p_{\kappa} P_{x_{2}}
\end{aligned}
$$

so it has to hold

$$
\begin{equation*}
\mathcal{K}-f_{x_{2}} \geq p_{\kappa}^{2} A_{x_{2}}-\omega_{0}^{2} C_{x_{2}}-2 \omega_{0} p_{\kappa} P_{x_{2}} \tag{2}
\end{equation*}
$$

Notice that we can omit the multiplication of function $\mathcal{G}\left(x_{2}\right)$ on both sides of formula (2).

Plugging the expressions for $\mathcal{K}$ and $p_{\kappa}$ obtained above leads to

$$
\begin{gathered}
\frac{A_{x_{1}}}{A_{x_{1}}^{\prime}}\left(\frac{f_{x_{1}}^{\prime}}{\omega_{0}^{2}}-C_{x_{1}}^{\prime}\right)+C_{x_{1}}-\frac{f_{x_{1}}+f_{x_{2}}}{\omega_{0}^{2}}+ \\
+2 \frac{P_{x_{1}}^{\prime}}{A_{x_{1}}^{\prime}}\left(P_{x_{1}}-\frac{A_{x_{1}} P_{x_{1}}^{\prime}}{A_{x_{1}}^{\prime}}\right)\left(1 \pm \sqrt{1-\frac{A_{x_{1}}^{\prime}}{P_{x_{1}}^{\prime 2}}\left(\frac{f_{x_{1}}^{\prime}}{\omega_{0}^{2}}-C_{x_{1}}^{\prime}\right)}\right) \geq \\
-\frac{A_{x_{2}}}{A_{x_{1}}^{\prime}}\left(\frac{f_{x_{1}}^{\prime}}{\omega_{0}^{2}}-C_{x_{1}}^{\prime}\right)-C_{x_{2}}+ \\
+2 \frac{P_{x_{1}}^{\prime}}{A_{x_{1}}^{\prime}}\left(\frac{A_{x_{2}} P_{x_{1}}^{\prime}}{A_{x_{1}}^{\prime}}-P_{x_{2}}\right)\left(1 \pm \sqrt{1-\frac{A_{x_{1}}^{\prime}}{P_{x_{1}}^{\prime 2}}\left(\frac{f_{x_{1}}^{\prime}}{\omega_{0}^{2}}-C_{x_{1}}^{\prime}\right)}\right)
\end{gathered}
$$

At every point $\left(x_{1}, x_{2}\right)$ where this condition holds, there exists a spherical light ray and the photon region is formed.

Let us introduce an observer located at $\left(x_{1 O}, x_{2 O}\right)$ with well-defined radial coordinate (i.e. outside the black hole horizon) and an orthonormal tetrad

$$
\begin{aligned}
& e_{0}=\left.\left(Y_{1} \partial_{k_{1}}+Y_{2} \partial_{k_{2}}\right)\right|_{\left(x_{1 O}, x_{2 O}\right)}, \\
& e_{1}=\left.\frac{1}{\sqrt{D\left(x_{1}, x_{2}\right)}} \partial_{x_{2}}\right|_{\left(x_{1 O}, x_{2 O}\right)} \\
& e_{2}=\left.\left(Y_{3} \partial_{k_{1}}+Y_{4} \partial_{k_{2}}\right)\right|_{\left(x_{1 O}, x_{2 O}\right)}, \\
& e_{3}=-\left.\frac{1}{\sqrt{B\left(x_{1}, x_{2}\right)}} \partial_{x_{1}}\right|_{\left(x_{1 O}, x_{2 O}\right)}
\end{aligned}
$$

Coefficients $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ are chosen such that the orthonormality conditions $g\left(e_{0}, e_{0}\right)=-1, g\left(e_{2}, e_{2}\right)=1$, $g\left(e_{0}, e_{2}\right)=0$ hold .

The tangent vector of light ray $\lambda(s)$ is

$$
\dot{\lambda}=\dot{x}_{1} \partial_{x_{1}}+\dot{x}_{2} \partial_{x_{2}}+\dot{k}_{1} \partial_{k_{1}}+\dot{k}_{2} \partial_{k_{2}}
$$

Moreover, there is also the tangent vector at the observation event

$$
\dot{\lambda}=-\alpha e_{0}+\beta\left(\sin \theta \cos \psi e_{1}+\sin \theta \sin \psi e_{2}+\cos \theta e_{3}\right)
$$

$\alpha, \beta$ - positive factors
$\theta, \psi$ - the colatitude and the azimuthal angle (the celestial coordinates of the observer)

The light rays are parameterized as $g(\dot{\lambda}, \dot{\lambda})=-\omega_{p l}^{2}$ and thus

$$
\alpha^{2}-\beta^{2}=\left.\omega_{p l}^{2}\right|_{\left(x_{1 O}, x_{2 O}\right)}
$$

Furthermore, $\alpha$ can be derived as

$$
\begin{gathered}
\alpha=g\left(\dot{\lambda}, e_{0}\right)=Y_{1}\left(\dot{k}_{1} g_{k_{1} k_{1}}+\dot{k}_{2} g_{k_{1} k_{2}}\right)+Y_{2}\left(\dot{k}_{1} g_{k_{1} k_{2}}+\dot{k}_{2} g_{k_{2} k_{2}}\right) \\
=Y_{1}\left(-\omega_{0}\right)+Y_{2} p_{\kappa}
\end{gathered}
$$

and then

$$
\beta=\sqrt{\left(-Y_{1} \omega_{0}+Y_{2} p_{\kappa}\right)^{2}-\omega_{p l}^{2}}
$$

Comparing factors of $\partial_{x_{1}}$ and $\partial_{k_{2}}$ in different expressions of $\dot{\lambda}$ yields

$$
\begin{aligned}
& \dot{x}_{1}=-\beta \cos \theta \frac{1}{\sqrt{B\left(x_{1}, x_{2}\right)}} \\
& \dot{k}_{2}=-\alpha Y_{2}+\beta \sin \theta \sin \psi Y_{4} .
\end{aligned}
$$

After plugging into these general formulae, one gets

$$
\sin \theta=\left.\left(1+\frac{\mathcal{K}+f_{x_{1}}+p_{\kappa}^{2} A_{x_{1}}-\omega_{0}^{2} C_{x_{1}}-2 \omega_{0} p_{\kappa} P_{x_{1}}}{F\left(x_{1}, x_{2}\right)\left(\left(-Y_{1} \omega_{0}+Y_{2} p_{\kappa}\right)^{2}-\omega_{p l}^{2}\right)}\right)^{1 / 2}\right|_{\left(x_{1 O}, x_{2 O}\right)}
$$

$\sin \psi=\frac{\left(A_{x_{1}}+A_{x_{2}}+F\left(x_{1}, x_{2}\right) Y_{2}^{2}\right) p_{\kappa}-\left(P_{x_{1}}+P_{x_{2}}+F\left(x_{1}, x_{2}\right) Y_{1} Y_{2}\right) \omega_{0}}{F\left(x_{1}, x_{2}\right) Y_{4}\left[F\left(x_{1}, x_{2}\right)\left(-Y_{1} \omega_{0}+Y_{2} p_{\kappa}\right)^{2}+\mathcal{K}-f_{x_{2}}+p_{\kappa}^{2} A_{x_{1}}-\omega_{0}^{2} C_{x_{1}}-2 \omega_{0} p_{\kappa} P_{x_{1}}\right]^{1 / 2}}$

- General conditions for the existence of the Carter constant in an axially symmetric stationary spacetime in plasma were derived.
- The necessary conditions on the form of the spacetime metric and plasma density are independent.
- General forms of the photon region and black hole shadow under defined conditions were obtained.
- Kerr Metric (Perlick and Tsupko, 2017)
- Hartle-Thorne Metric

In both cases
$x_{1}=r, x_{2}=\vartheta, k_{1}=t, k_{2}=\varphi$.

$$
\begin{gathered}
B(r, \vartheta)=\frac{\rho^{2}}{\Delta}, \quad D(r, \vartheta)=\rho^{2}, \\
F(r, \vartheta)=\rho^{2}, \quad \mathcal{F}(r)=\Delta, \quad \mathcal{G}(\vartheta)=1, \\
A_{r}=-\frac{a^{2}}{\Delta}, \quad C_{r}=\frac{\left(r^{2}+a^{2}\right)^{2}}{\Delta}, \quad P_{r}=-\frac{a\left(r^{2}+a^{2}\right)}{\Delta}, \\
A_{\vartheta}=\sin ^{-2} \vartheta, \quad C_{\vartheta}=-a^{2} \sin ^{2} \vartheta, \quad P_{\vartheta}=a,
\end{gathered}
$$

where $\Delta=r^{2}+a^{2}-2 M r, \rho^{2}=r^{2}+a^{2} \cos ^{2} \vartheta$.

Assuming that $\omega_{p l}^{2}(r, \vartheta)=\left(f_{r}+f_{\vartheta}\right) / F(r, \vartheta)$, applying the general formulae gives

$$
\begin{gathered}
\mathcal{F}(r)\left(\frac{\partial S_{r}}{\partial r}\right)^{2}+f_{r}+p_{\varphi}^{2} A_{r}-\omega_{0}^{2} C_{r}-2 \omega_{0} p_{\varphi} P_{r}= \\
\Delta\left(\frac{\partial S_{r}}{\partial r}\right)^{2}+f_{r}-\frac{1}{\Delta}\left(a p_{\varphi}+\left(r^{2}+a^{2}\right) \omega_{0}\right)^{2}
\end{gathered}
$$

and

$$
\begin{gathered}
-\mathcal{G}(\vartheta)\left(\frac{\partial S_{\vartheta}}{\partial \vartheta}\right)^{2}-f_{\vartheta}-p_{\varphi}^{2} A_{\vartheta}+\omega_{0}^{2} C_{\vartheta}+2 \omega_{0} p_{\varphi} P_{\vartheta}= \\
-\left(\frac{\partial S_{\vartheta}}{\partial \vartheta}\right)^{2}-f_{\vartheta}-\left(\frac{p_{\varphi}}{\sin \vartheta}+a \sin \vartheta \omega_{0}\right)^{2}
\end{gathered}
$$

See (27) in Perlick and Tsupko (2017).

$$
\begin{aligned}
A(r, \vartheta) & =A_{1} \mathcal{J}_{A}-j_{1}^{2} \sin ^{2} \vartheta r^{2} \mathcal{J}_{\varphi}, & B(r, \vartheta) & =A_{1}^{-1} \mathcal{J}_{B}, \\
C(r, \vartheta) & =\sin ^{2} \vartheta r^{2} \mathcal{J}_{\varphi}, & D(r, \vartheta) & =r^{2} \mathcal{J}_{\varphi}, \\
P(r, \vartheta) & =-j_{1} \sin ^{2} \vartheta r^{2} \mathcal{J}_{\varphi}, & A_{1} & =1-\frac{2 M}{r}+\frac{2 J^{2}}{r^{4}},
\end{aligned}
$$

where

$$
\begin{gathered}
\mathcal{J}_{A}=\left\{1+2 P_{2}(\cos \vartheta)\left[j\left(1+\frac{M}{r}\right)+K Q_{2}^{2}\right]\right\} \\
\mathcal{J}_{B}=\left\{1-2 P_{2}(\cos \vartheta)\left[j\left(1-\frac{5 M}{r}\right)+K Q_{2}^{2}\right]\right\} \\
\mathcal{J}_{\varphi}=\left\{1+2 P_{2}(\cos \vartheta)\left[-j\left(1+\frac{2 M}{r}\right)+K\left(\frac{2 M}{\sqrt{r(r-2 M)}} Q_{2}^{1}-Q_{2}^{2}\right)\right]\right\} .
\end{gathered}
$$

It can be seen that the ratio of terms $B(r, \vartheta)$ and $D(r, \vartheta)$ gives

$$
\frac{B(r, \vartheta)}{D(r, \vartheta)}=\frac{\mathcal{J}_{B}}{A_{1} r^{2} \mathcal{J}_{\varphi}} \neq \frac{\mathcal{G}(\vartheta)}{\mathcal{F}(r)}
$$

