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Setup Staticity and Asymptotically Flatness

We study solutions (L4, g) to the source–free Einstein–Maxwell equations
that are

1 Standard Static
∃ (M, g0) Riemannian manifold with compact boundary ∂M and
N : M → R with N > 0 in M̊, called Lapse Function such that

L4 = R× M, g = −N2dt2 + g0.

2 Asymptotically Flat

in presence of (a Black Hole Horizon or) an Equipotential Photon Surface.
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Setup Static Einstein Equations in Electrovacuum

Introducing the Electric Potential Ψ : M → R, the problem can be reduced
to the study of tuples (M, g0, N, Ψ) which satisfy

N Ric = D2N − 2
N

dΨ2 +
1
N

|DΨ|2 g0 in M ,

∆N =
1
N

|DΨ|2 in M ,

∆Ψ =
1
N

g0(DN , DΨ) in M ,

N = N0 ≥ 0, Ψ = Ψ0 > 0 on ∂M

(1)

and the decay conditions

N = 1 − mADM

| x |
+ o2(| x |−1), Ψ = o(1) as | x | → +∞ ,
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Setup The Reissner-Nordström solution

The Reissner-Nordström solution

The unique rotationally symmetric solution is the Reissner-Nordström
solution of mass m ∈ R and charge q > 0

M = [r0,+∞)× S2 , g0 =
1

N2 dr2 + r2 gS2 ,

where the Lapse Function and the Electric Potential are

N =

√
1 − 2m

r
+

q2

r2 , Ψ =
q
r
.
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Setup The Reissner-Nordström solution

The behaviour of the Reissner-Nordström solution and the interval [r0,+∞) depend
on the two parameters m and q:

The sub–extremal case, when m > q

The extremal case, when m = q

The super–extremal case, when m < q

r

N2

m = q
m > q

0 < m < q

m ≤ 0

-1

m m +
√

m2 − q2q2

m
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Uniqueness Theorems Black Hole Uniqueness

Uniqueness Theorems

Black Hole Uniqueness (Borghini, Cederbaum, C.)

Let (M, g0,N,Ψ) be an asymptotically flat solution to (1).
Suppose that ∂M is connected and N0 = 0. Then

if the horizon ∂M is non–degenerate (|DN| ≠ 0 on ∂M), then
(M, g0,N,Ψ) is isometric to a sub–extremal Reissner-Nordström,

if the horizon ∂M is degenerate, (M, g0,N,Ψ) is isometric to an
extremal Reissner-Nordström.

The most complete results in the literature are:

Israel, 1968

Masood–ul–Alam, 1992

Heusler, 1994 and 1997

Chruściel and Tod, 2007
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Photon surfaces

Photon surfaces

Definition

An embedded timelike hypersurface P3 ↪→ (L4, g) is called a Photon
Surface if it is null totally geodesic.

A photon surface Pn is called Equipotential if the lapse function N and
the electric potential Ψ are constant along each connected component of
each time slice Σ2(t) := P3 ∩ M(t).

If N and Ψ are constant on each
connected component, independently
of the time slice, P3 is a Photon
Sphere.

In Reissner-Nordström{
r =

3m±
√

9m2−8q2

2

}
.
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Photon surfaces Properties

Properties of Equipotential Photon Surfaces

Let Σ2 = P3 ∩ M be a compact time slice of an Equipotential Photon Surface
with induced metric σ. Then

(
Σ2, σ

)
in

(
M, g0

)
is totally umbilic,

its mean curvature H is constant,

the normal derivative ν(N) is also constant on Σ2 and

2ν(N) = cHN0,

for a constant c ∈ R (in the Photon Sphere case c = 1),

its scalar curvature is constant and

R =
2

N2
0
|DΨ|2 +

(
c +

1
2

)
H2 .
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Uniqueness Theorems Equipotential Photon Surfaces Uniqueness

Uniqueness Theorems

Equipotential Photon Surface Uniqueness (Borghini, Cederbaum, C.)

Let (M, g0,N,Ψ) be an asymptotically flat solution to (1). Suppose that ∂M is
a connected time slice of a equipotential photon surface with N0 > 0, Ψ0 > 0.
Then (M, g0,N,Ψ) can be isometrically embedded into a Reissner-Nordström
solution. In particular, the solution is:

sub–extremal if N2
0 < (1 −Ψ0)

2,

extremal if N2
0 = (1 −Ψ0)

2,

super–extremal if N2
0 > (1 −Ψ0)

2.

The most complete results in the literature are:
Yazadjiev, 2015
Cederbaum and Galloway, 2016
Rogatko, 2016
Cederbaum, Jahns and Vičánek–Martínez, in preparation.
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Strategy of the proof Introduction of the parameters m and q

Strategy of the proof

1 Introduce parameters m , q ∈ R, q > 0.

Consider

X = Ψ2 + 1 − N2 +

(
N2

0
Ψ0

−Ψ0 −
1
Ψ0

)
Ψ ,

which satisfies
∆X =

1
N

g0(DX, DN).

Since X = 0 on ∂M and X → 0 at infinity,

N2 = Ψ2−2m
q

Ψ+ 1 on M .

Rewriting (1) in terms of the sole lapse function, the system is ill–posed on

S := {N2 + k = 0}, k :=
m2

q2 − 1 .
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Ψ0

−Ψ0 −
1
Ψ0

)
Ψ ,

which satisfies
∆X =

1
N

g0(DX, DN).

Since X = 0 on ∂M and X → 0 at infinity,

N2 = Ψ2−2m
q

Ψ+ 1 on M .

Rewriting (1) in terms of the sole lapse function, the system is ill–posed on

S := {N2 + k = 0}, k :=
m2

q2 − 1 .
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Strategy of the proof Cylindrical ansatz

The following ideas are based on the cylindrical ansatz strategy introduced for the
vacuum case by V. Agostiniani and L. Mazzieri, 2017.

2 Set the cylindrical ansatz.

Define the pseudo–radial function ϱ : M → R such that

N2 = 1 − 2m
ϱ

+
q2

ϱ2 ,

explicitly

ϱ± =
q2

m ± q
√

N2 + k
, k :=

m2

q2 − 1 .

After chosing ϱ+ or ϱ−, introduce the pseudo-affine function φ± : M → R,

φ± = log [ϱ±(1 + N)− m ] .

and the cylindrical ansatz metric

g± =
g0

ϱ2
±
.
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Strategy of the proof Cylindrical ansatz

Cylindrical ansatz for Reissner-Nordström
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Strategy of the proof Bochner’s formula and consequences

The original metric g0 is rotationally symmetric (hence Reissner-Nordström)~w
the conformal metric g is cylindrical~w

|∇2φ|g ≡ 0 in M.~w
div

(
1
ϱN ∇|∇φ|pg

)
≤ 0 in M for some p ≥ 2.
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