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Introduction

Remarkable structures in black hole perturbation theory:

» Hidden symmetries: objects more general than isometries: Killing
tensors, Killing-Yano tensors, Killing spinors

» Teukolsky equations: perturbations reduce to a single scalar equation

» Reconstructions: symmetry operators map solutions of Teukolsky egs.
to linearized metrics (Hertz potentials)

» Separability and integrability: geodesic motion, Klein-Gordon,
Teukolsky,...
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Introduction

Remarkable structures in black hole perturbation theory:

» Hidden symmetries: objects more general than isometries: Killing
tensors, Killing-Yano tensors, Killing spinors

» Teukolsky equations: perturbations reduce to a single scalar equation

» Reconstructions: symmetry operators map solutions of Teukolsky egs.
to linearized metrics (Hertz potentials)

» Separability and integrability: geodesic motion, Klein-Gordon,
Teukolsky,...

There are more hidden symmetries...
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Motivation: more ‘hidden symmetries’

» The Teukolsky egs. can be written as sini et a1 v021

(DD +V)® =0
where D, = V, + A, for some 1-form A,

- & = p .
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where D, = V, + A, for some 1-form A,

» Killing-like objects: derived from a Killing spinor teenrose-iaiker »701:
VaAKBC) =0, where KA = \Ifgl/gL(AoB).

» Twistor equation V 4/ (w?) = 0 = Petrov types N, O = no BHs.
The Killing spinor is ‘irreducible’
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Motivation: more ‘hidden symmetries’
> The Teukolsky eqgs. can be written as tsini et a1 2021
(D*Dy+ V)0 =

where D, = V, + A, for some 1-form A,

» Killing-like objects: derived from a Killing spinor teenrose-iaiker »701:
VaAKBC) =0, where KA = \Ilgl/SL(AoB).

» Twistor equation V 4/ (w?) = 0 = Petrov types N, O = no BHs.
The Killing spinor is ‘irreducible’

» However, it turns out that tea >1e1:
D (A le—l/S B)] 0

Question: What is the geometry underlying BH perturbation theory?
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Twistors

TWiStOI’ theory [Penrose ’76]

‘twistor space’

» Differential equations in spacetime < holomorphic geometry in

- & = p .
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Twistors

TWiStOI’ theory [Penrose ’76]

» Differential equations in spacetime < holomorphic geometry in
‘twistor space’

» Drawback: Weyl curvature must be self-dual
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Twistors

TWiStor theory [Penrose ’76]

» Differential equations in spacetime < holomorphic geometry in
‘twistor space’

» Drawback: Weyl curvature must be self-dual

» Different kinds of geometry deeply interconnected:

conformal, complex, projective, spin
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Twistors

TWiStor theory [Penrose ’76]

» Differential equations in spacetime < holomorphic geometry in
‘twistor space’

» Drawback: Weyl curvature must be self-dual
» Different kinds of geometry deeply interconnected:
conformal, complex, projective, spin
> Riemannian version tssiyan-niccnin-singer »781: 'twistor space’ is the space of
complex structures

subspaces of TM pure spinors

orthogonal almost ~ Jmaximal isotropic| projective
complex structures | -
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Complex & spin geometry

Remark: we allow different signatures and complex metrics.

» An almost-complex structure is a (1,1) tensor J such that J? = —1,
JtgJ = g. It is equivalent to two projective spinors s 21a1:

JY = (OA/,B + LAOB)(Sé;

’LO)

(oct
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Complex & spin geometry

Remark: we allow different signatures and complex metrics.

» An almost-complex structure is a (1,1) tensor J such that J? = —1,
JtgJ = g. It is equivalent to two projective spinors s 21a1:
i /
JY = oy HAop)oa,
T o) T OB
> J induces a splitting TM @ C = L@ L. We say that J is integrable if
L and L are involutive, and half-integrable if only one them is.
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Remark: we allow different signatures and complex metrics.

» An almost-complex structure is a (1,1) tensor J such that J? = —1,
JtgJ = g. It is equivalent to two projective spinors s 21a1:
1 /
JY = oy HAop)oa,
T o) T OB
> J induces a splitting TM @ C = L@ L. We say that J is integrable if
L and L are involutive, and half-integrable if only one them is.

» Relativity: [I:,f,] c L < 3 shear-free null geodesic congruence
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Complex & spin geometry

Remark: we allow different signatures and complex metrics.
» An almost-complex structure is a (1,1) tensor J such that J? = —1,
JtgJ = g. It is equivalent to two projective spinors s 21a1:
i

(0ct)

J induces a splitting TM @ C = L@ L. We say that J is integrable if
L and L are involutive, and half-integrable if only one them is.

J4% = (OALB + LAOB)(Séj

v

v

Relativity: [I:,f)] c L < 3 shear-free null geodesic congruence

v

Gauge freedom:

conformal transf. + rescalings of spinors

v

This defines a ‘gauge group’ G,. Fields transforming under G, are
sections of vector bundles E.
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The complex-conformal connection

Theorem 720, BA ’21al
» J induces a natural connection €, = €44/ on E (covariant under
conformal and projective transformations)
» J is half-integrable iff C,0® = 0 or C,t® = 0, and integrable iff both
of these hold
> Let Cur := 04Cun (partia|~conr1ection). If CuoP =0 and Weyl is
algebraically special, then [C4/, Cp/] = 0.
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The complex-conformal connection

Theorem (s 20, Ba r21a)
» J induces a natural connection €, = €44/ on E (covariant under
conformal and projective transformations)
» J is half-integrable iff C,0® = 0 or C,t® = 0, and integrable iff both
of these hold
> Let Cu 1= 02Cau (partia|~conr1ection). If CuoP =0 and Weyl is
algebraically special, then [C4/, Cp/] = 0.

Remarks:
» Construction of C,: combine Lee form of J with ‘GHP’ connection

» Integrability is encoded in (non-linear) parallel spinors

> [éA/, éB/] = 0 = ‘flat connection’ = de Rham complex & parallel
frames
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Remark
The condition C44:0% = 0 is not only conceptually clear but also

very useful in practice.

(To illustrate this, work out the simpler example V 4407 = 0)
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Integration

» The condition [L, L] C L gives L the structure of a Lie algebroid
= 3 natural de Rham complex (A®* = AL, d):

0— A" 5 A 5 A2 50, d2=0
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Integration
> The condition [L, L] C L gives L the structure of a Lie algebroid
= 3 natural de Rham complex (A®* = AL, d):
0— A" 5 A 5 A2 50, d?2=0

» Locally exact: if ago = 0, then there is, locally, ¥ such that ¢ = &1/1.
Note: there are integration “constants”,

v—=v+k  dk=0
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Integration

> The condition [L, L] C L gives L the structure of a Lie algebroid
= 3 natural de Rham complex (A®* = A®L, d):

0— A" 5 A 5 A2 50, d?2=0

» Locally exact: if Ehp = 0, then there is, locally, ¥ such that ¢ = 611/1.
Note: there are integration “constants”,

v—=v+k  dk=0

» We need forms with values on E. The connection € induces d€.

> If Weyl= alg. special, then (d®)%2 = 0 and (A® ® E,d°) is locally
exact as well.

(In practice: if éA/gpA/_“ =0, then p . = Ca.)

Bernardo Araneda (AEIl) Twistor geometry, non-linear structures, and perturbation theory Feb 2022 7/10



The conformal Einstein equations

» The whole construction is conformally invariant

> Issue: the Einstein equations are not conformally invariant
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» The whole construction is conformally invariant

> Issue: the Einstein equations are not conformally invariant

= Study a more general system: the (closed) Einstein-Weyl equations.
Equivalently: conformal Einstein equations
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The conformal Einstein equations

» The whole construction is conformally invariant

> Issue: the Einstein equations are not conformally invariant

= Study a more general system: the (closed) Einstein-Weyl equations.

Equivalently: conformal Einstein equations

> Conformal structure (M, [g]) equipped with Weyl connection:
V¥Vg =2w® g, with w = dlog Q.

» The field equations are
Ric" = \g

» Reduction to ordinary Einstein: break conformal invariance O=1
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Theorem e -2mm1: Suppose (M, [g]) satisfies the conformal Einstein
equations and is (half-) algebraically special. Then the conformal metric is

Gab = Tab + Cap + hab(q))
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Theorem e -2mm1: Suppose (M, [g]) satisfies the conformal Einstein
equations and is (half-) algebraically special. Then the conformal metric is
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> 1, is conformally flat
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Theorem e -2mm1: Suppose (M, [g]) satisfies the conformal Einstein
equations and is (half-) algebraically special. Then the conformal metric is

Gab = Tab + Cap + hab((b)

> 1, is conformally flat

> cqp is given by “integration constants” and is conf. half-flat
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Theorem e -2mm1: Suppose (M, [g]) satisfies the conformal Einstein
equations and is (half-) algebraically special. Then the conformal metric is

Gab = Tab + Cap + hab((b)

> 1), is conformally flat
> cqp is given by “integration constants” and is conf. half-flat
> hap(P) is a Hertz potential (from perturbation theory!)
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Theorem e -2mm1: Suppose (M, [g]) satisfies the conformal Einstein
equations and is (half-) algebraically special. Then the conformal metric is

Gab = Tlab + Cab + hab((b)

v

1y is conformally flat

> cqp is given by “integration constants” and is conf. half-flat

v

hap(®) is a Hertz potential (from perturbation theory!)
O satisfies the “conformal hyper-heavenly (CHH) equation”

v

(€€, — 18W2) D + (€ 4/ Cppr ) (CA BB @) — 4(CA Q) (CB @) (€4 Cp ) = K

~~ conformally inv., coordinate-free generalization of [Plebanski-Robinson '76]
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Theorem e -2mm1: Suppose (M, [g]) satisfies the conformal Einstein
equations and is (half-) algebraically special. Then the conformal metric is

Gab = Tlab + Cab + hab((b)

> 1), is conformally flat
> cqp is given by “integration constants” and is conf. half-flat

> hap(P) is a Hertz potential (from perturbation theory!)
» O satisfies the “conformal hyper-heavenly (CHH) equation”

(€€, — 18W2) D + (€ 4/ Cppr ) (CA BB @) — 4(CA Q) (CB @) (€4 Cp ) = K

~~ conformally inv., coordinate-free generalization of [Plebanski-Robinson '76]

» The linear term
(CC, — 18Wy)P =0

is the Teukolsky equation.
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Summary of key points:

» A choice of complex structure J determines conformally invariant
connection

» Integrability of J encoded in (non-linear) parallel spinors.
‘Hidden symmetries’ are a consequence of this

» Reduction of (full, non-linear) conformal Einstein eqs. to CHH eq.,
and reconstruction of conformal structure

» Key facts from perturbation theory encoded, geometrically clear

Bernardo Araneda (AEI) Twistor geometry, non-linear structures, and perturbation theory Feb 2022 10/10



Summary of key points:

» A choice of complex structure J determines conformally invariant
connection

» Integrability of J encoded in (non-linear) parallel spinors.
‘Hidden symmetries’ are a consequence of this

» Reduction of (full, non-linear) conformal Einstein eqs. to CHH eq.,
and reconstruction of conformal structure

» Key facts from perturbation theory encoded, geometrically clear

Thanks!
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