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Introduction

Remarkable structures in black hole perturbation theory:

I Hidden symmetries: objects more general than isometries: Killing
tensors, Killing-Yano tensors, Killing spinors

I Teukolsky equations: perturbations reduce to a single scalar equation

I Reconstructions: symmetry operators map solutions of Teukolsky eqs.
to linearized metrics (Hertz potentials)

I Separability and integrability: geodesic motion, Klein-Gordon,
Teukolsky,...

There are more hidden symmetries...

Bernardo Araneda (AEI) Twistor geometry, non-linear structures, and perturbation theory Feb 2022 1/10



Introduction

Remarkable structures in black hole perturbation theory:

I Hidden symmetries: objects more general than isometries: Killing
tensors, Killing-Yano tensors, Killing spinors

I Teukolsky equations: perturbations reduce to a single scalar equation

I Reconstructions: symmetry operators map solutions of Teukolsky eqs.
to linearized metrics (Hertz potentials)

I Separability and integrability: geodesic motion, Klein-Gordon,
Teukolsky,...

There are more hidden symmetries...

Bernardo Araneda (AEI) Twistor geometry, non-linear structures, and perturbation theory Feb 2022 1/10



Motivation: more ‘hidden symmetries’

I The Teukolsky eqs. can be written as [Bini et al ’02]

(DaDa + V )Φ = 0

where Da = ∇a +Aa for some 1-form Aa

I Killing-like objects: derived from a Killing spinor [Penrose-Walker ’70]:

∇A′ (AKBC) = 0, where KAB = Ψ
−1/3
2 ι(AoB).

I Twistor equation ∇A′ (AωB) = 0 ⇒ Petrov types N, O ⇒ no BHs.
The Killing spinor is ‘irreducible’

I However, it turns out that [BA ’18]:

Question: What is the geometry underlying BH perturbation theory?
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Twistors

Twistor theory [Penrose ’76]

I Differential equations in spacetime ⇔ holomorphic geometry in
‘twistor space’

I Drawback: Weyl curvature must be self-dual

I Different kinds of geometry deeply interconnected:

conformal, complex, projective, spin

I Riemannian version [Atiyah-Hitchin-Singer ’78]: ‘twistor space’ is the space of
complex structures{

orthogonal almost
complex structures

}
∼=

{
maximal isotropic
subspaces of TM

}
∼=

{
projective

pure spinors

}
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Complex & spin geometry

Remark: we allow different signatures and complex metrics.

I An almost-complex structure is a (1, 1) tensor J such that J2 = −1,
J tgJ = g. It is equivalent to two projective spinors [BA ’21a]:

Jab =
i

(oCιC)
(oAιB + ιAoB)δA

′
B′

I J induces a splitting TM ⊗C = L⊕ L̃. We say that J is integrable if
L and L̃ are involutive, and half-integrable if only one them is.

I Relativity: [L̃, L̃] ⊂ L̃ ⇔ ∃ shear-free null geodesic congruence

I Gauge freedom:

conformal transf. + rescalings of spinors

I This defines a ‘gauge group’ Go. Fields transforming under Go are
sections of vector bundles E.
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The complex-conformal connection

Theorem [BA ’20, BA ’21a]

I J induces a natural connection Ca = CAA′ on E (covariant under
conformal and projective transformations)

I J is half-integrable iff Cao
B = 0 or Caι

B = 0, and integrable iff both
of these hold

I Let C̃A′ := oACAA′ (partial connection). If Cao
B = 0 and Weyl is

algebraically special, then [C̃A′ , C̃B′ ] = 0.

Remarks:

I Construction of Ca: combine Lee form of J with ‘GHP’ connection

I Integrability is encoded in (non-linear) parallel spinors

I [C̃A′ , C̃B′ ] = 0 ⇒ ‘flat connection’ ⇒ de Rham complex & parallel
frames
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Remark
The condition CAA′oB = 0 is not only conceptually clear but also
very useful in practice.

(To illustrate this, work out the simpler example ∇AA′oB = 0)
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Integration

I The condition [L̃, L̃] ⊂ L̃ gives L̃ the structure of a Lie algebroid
⇒ ∃ natural de Rham complex (Λ• = ∧•L̃, d̃):

0→ Λ0 → Λ1 → Λ2 → 0, d̃2 = 0

I Locally exact: if d̃ϕ = 0, then there is, locally, ψ such that ϕ = d̃ψ.
Note: there are integration “constants”,

ψ → ψ + k, d̃k = 0

I We need forms with values on E. The connection C induces d̃C.

I If Weyl= alg. special, then (d̃C)2 = 0 and (Λ• ⊗ E, d̃C) is locally
exact as well.

(In practice: if C̃A′
ϕA′... = 0, then ϕA′... = C̃A′ψ...)
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The conformal Einstein equations

I The whole construction is conformally invariant

I Issue: the Einstein equations are not conformally invariant

⇒ Study a more general system: the (closed) Einstein-Weyl equations.
Equivalently: conformal Einstein equations

I Conformal structure (M, [g]) equipped with Weyl connection:
∇wg = 2w ⊗ g, with w = d log Ω̊.

I The field equations are
Ricw = λg

I Reduction to ordinary Einstein: break conformal invariance Ω̊ ≡ 1

Bernardo Araneda (AEI) Twistor geometry, non-linear structures, and perturbation theory Feb 2022 8/10



The conformal Einstein equations

I The whole construction is conformally invariant

I Issue: the Einstein equations are not conformally invariant

⇒ Study a more general system: the (closed) Einstein-Weyl equations.
Equivalently: conformal Einstein equations

I Conformal structure (M, [g]) equipped with Weyl connection:
∇wg = 2w ⊗ g, with w = d log Ω̊.

I The field equations are
Ricw = λg

I Reduction to ordinary Einstein: break conformal invariance Ω̊ ≡ 1

Bernardo Araneda (AEI) Twistor geometry, non-linear structures, and perturbation theory Feb 2022 8/10



The conformal Einstein equations

I The whole construction is conformally invariant

I Issue: the Einstein equations are not conformally invariant

⇒ Study a more general system: the (closed) Einstein-Weyl equations.
Equivalently: conformal Einstein equations

I Conformal structure (M, [g]) equipped with Weyl connection:
∇wg = 2w ⊗ g, with w = d log Ω̊.

I The field equations are
Ricw = λg

I Reduction to ordinary Einstein: break conformal invariance Ω̊ ≡ 1

Bernardo Araneda (AEI) Twistor geometry, non-linear structures, and perturbation theory Feb 2022 8/10



Theorem [BA ’21b]: Suppose (M, [g]) satisfies the conformal Einstein
equations and is (half-) algebraically special. Then the conformal metric is

gab = ηab + cab + hab(Φ)

I ηab is conformally flat

I cab is given by “integration constants” and is conf. half-flat

I hab(Φ) is a Hertz potential (from perturbation theory!)
I Φ satisfies the “conformal hyper-heavenly (CHH) equation”

(CaCa − 18Ψ2)Φ + Ω̊(C̃A′ C̃B′Φ)(C̃A′
C̃B′

Φ) − 4(C̃A′
Ω̊)(C̃B′

Φ)(C̃A′ C̃B′Φ) = K

 conformally inv., coordinate-free generalization of [Plebanski-Robinson ’76]

I The linear term
(CaCa − 18Ψ2)Φ = 0

is the Teukolsky equation.
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Summary of key points:

I A choice of complex structure J determines conformally invariant
connection

I Integrability of J encoded in (non-linear) parallel spinors.
‘Hidden symmetries’ are a consequence of this

I Reduction of (full, non-linear) conformal Einstein eqs. to CHH eq.,
and reconstruction of conformal structure

I Key facts from perturbation theory encoded, geometrically clear

Thanks!
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