Twistor geometry, non-linear structures, and perturbation theory

Bernardo Araneda
Max-Planck-Institut für Gravitationsphysik
(Albert-Einstein-Institut), Potsdam-Golm
12th Central European Relativity Seminar

Introduction

Remarkable structures in black hole perturbation theory:

- Hidden symmetries: objects more general than isometries: Killing tensors, Killing-Yano tensors, Killing spinors
- Teukolsky equations: perturbations reduce to a single scalar equation
- Reconstructions: symmetry operators map solutions of Teukolsky eqs. to linearized metrics (Hertz potentials)
- Separability and integrability: geodesic motion, Klein-Gordon, Teukolsky,...

Introduction

Remarkable structures in black hole perturbation theory:

- Hidden symmetries: objects more general than isometries: Killing tensors, Killing-Yano tensors, Killing spinors
- Teukolsky equations: perturbations reduce to a single scalar equation
- Reconstructions: symmetry operators map solutions of Teukolsky eqs. to linearized metrics (Hertz potentials)
- Separability and integrability: geodesic motion, Klein-Gordon, Teukolsky,...

There are more hidden symmetries...

Motivation: more 'hidden symmetries'

- The Teukolsky eqs. can be written as [Bini et al '02]

$$
\left(D^{a} D_{a}+V\right) \Phi=0
$$

where $D_{a}=\nabla_{a}+A_{a}$ for some 1-form A_{a}

Motivation: more 'hidden symmetries'

- The Teukolsky eqs. can be written as [Bini et al , ${ }^{02]}$

$$
\left(D^{a} D_{a}+V\right) \Phi=0
$$

where $D_{a}=\nabla_{a}+A_{a}$ for some 1-form A_{a}

- Killing-like objects: derived from a Killing spinor [Penrose-Walker ${ }^{\text {r70] }}$: $\nabla_{A^{\prime}}{ }^{(A} K^{B C)}=0$, where $K^{A B}=\Psi_{2}^{-1 / 3} \iota^{(A} O^{B)}$.
- Twistor equation $\nabla_{A^{\prime}}\left({ }^{(A} \omega^{B)}=0 \Rightarrow\right.$ Petrov types $\mathrm{N}, \mathrm{O} \Rightarrow$ no BHs. The Killing spinor is 'irreducible'

Motivation: more 'hidden symmetries'

- The Teukolsky eqs. can be written as [Bini et al , ${ }^{02]}$

$$
\left(D^{a} D_{a}+V\right) \Phi=0
$$

where $D_{a}=\nabla_{a}+A_{a}$ for some 1-form A_{a}

- Killing-like objects: derived from a Killing spinor [Penrose-Walker ${ }^{\text {'70] }}$: $\nabla_{A^{\prime}}{ }^{(A} K^{B C)}=0$, where $K^{A B}=\Psi_{2}^{-1 / 3} \iota^{\left(A_{O} B\right)}$.
- Twistor equation $\nabla_{A^{\prime}}\left({ }^{(A} \omega^{B)}=0 \Rightarrow\right.$ Petrov types $\mathrm{N}, \mathrm{O} \Rightarrow$ no BHs. The Killing spinor is 'irreducible'
- However, it turns out that ${ }_{[B A}{ }^{188}$:

$$
K^{A B}=\Psi_{2}^{-1 / 3} l^{(A)} \sigma^{B)} D_{A^{\prime}}{ }^{(A} o^{B)}=0
$$

Motivation: more 'hidden symmetries'

- The Teukolsky eqs. can be written as [Bini et al , ${ }^{02]}$

$$
\left(D^{a} D_{a}+V\right) \Phi=0
$$

where $D_{a}=\nabla_{a}+A_{a}$ for some 1-form A_{a}

- Killing-like objects: derived from a Killing spinor [Penrose-Walker ${ }^{\text {'70] }}$: $\nabla_{A^{\prime}}{ }^{(A} K^{B C)}=0$, where $K^{A B}=\Psi_{2}^{-1 / 3} \iota^{(A} O^{B)}$.
- Twistor equation $\nabla_{A^{\prime}}\left({ }^{(A} \omega^{B)}=0 \Rightarrow\right.$ Petrov types $\mathrm{N}, \mathrm{O} \Rightarrow$ no BHs. The Killing spinor is 'irreducible'
- However, it turns out that $\left.{ }_{[B A}{ }^{\prime} 18\right]$:

$$
K^{A B}=\Psi_{2}^{-1 / 3 l^{(A)} \sigma^{B B} \quad D_{A^{\prime}}{ }^{(A} o^{B)}=0}{ }_{A^{\prime}}^{(A}\left[\Psi_{2}^{-1 / 3} l^{B)}\right]=0
$$

Question: What is the geometry underlying BH perturbation theory?

Twistor theory [Penrose ${ }^{~}{ }^{76]}$

- Differential equations in spacetime \Leftrightarrow holomorphic geometry in 'twistor space'

Twistor theory [Penrose ${ }^{176]}$

- Differential equations in spacetime \Leftrightarrow holomorphic geometry in 'twistor space'
- Drawback: Weyl curvature must be self-dual

Twistor theory [Penrose ${ }^{~}{ }^{76]}$

- Differential equations in spacetime \Leftrightarrow holomorphic geometry in 'twistor space'
- Drawback: Weyl curvature must be self-dual
- Different kinds of geometry deeply interconnected:
conformal, complex, projective, spin

Twistors

Twistor theory [Penrose ${ }^{~}{ }^{76]}$

- Differential equations in spacetime \Leftrightarrow holomorphic geometry in 'twistor space'
- Drawback: Weyl curvature must be self-dual
- Different kinds of geometry deeply interconnected:
conformal, complex, projective, spin
- Riemannian version [atiyah-Hitchin-Singer '78]: 'twistor space' is the space of complex structures

$$
\left\{\begin{array}{c}
\text { orthogonal almost } \\
\text { complex structures }
\end{array}\right\} \cong\left\{\begin{array}{c}
\text { maximal isotropic } \\
\text { subspaces of } T M
\end{array}\right\} \cong\left\{\begin{array}{c}
\text { projective } \\
\text { pure spinors }
\end{array}\right\}
$$

Complex \& spin geometry

Remark: we allow different signatures and complex metrics.

- An almost-complex structure is a $(1,1)$ tensor J such that $J^{2}=-1$, $J^{\mathrm{t}} g J=g$. It is equivalent to two projective spinors [BA '21a]:

$$
J_{b}^{a}=\frac{i}{\left(o_{C} \iota^{C}\right)}\left(o^{A} \iota_{B}+\iota^{A} o_{B}\right) \delta_{B^{\prime}}^{A^{\prime}}
$$

Complex \& spin geometry

Remark: we allow different signatures and complex metrics.

- An almost-complex structure is a $(1,1)$ tensor J such that $J^{2}=-1$, $J^{\mathrm{t}} g J=g$. It is equivalent to two projective spinors [BA '21a]:

$$
J_{b}^{a}=\frac{i}{\left(o_{C} \iota^{C}\right)}\left(o^{A} \iota_{B}+\iota^{A} o_{B}\right) \delta_{B^{\prime}}^{A^{\prime}}
$$

- J induces a splitting $T M \otimes \mathbb{C}=L \oplus \tilde{L}$. We say that J is integrable if L and \tilde{L} are involutive, and half-integrable if only one them is.

Complex \& spin geometry

Remark: we allow different signatures and complex metrics.

- An almost-complex structure is a $(1,1)$ tensor J such that $J^{2}=-1$, $J^{\mathrm{t}} g J=g$. It is equivalent to two projective spinors [ba '21a]:

$$
J_{b}^{a}=\frac{i}{\left(o_{C} \iota^{C}\right)}\left(o^{A} \iota_{B}+\iota^{A} o_{B}\right) \delta_{B^{\prime}}^{A^{\prime}}
$$

- J induces a splitting $T M \otimes \mathbb{C}=L \oplus \tilde{L}$. We say that J is integrable if L and \tilde{L} are involutive, and half-integrable if only one them is.
- Relativity: $[\tilde{L}, \tilde{L}] \subset \tilde{L} \quad \Leftrightarrow \quad \exists$ shear-free null geodesic congruence

Complex \& spin geometry

Remark: we allow different signatures and complex metrics.

- An almost-complex structure is a $(1,1)$ tensor J such that $J^{2}=-1$, $J^{\mathrm{t}} g J=g$. It is equivalent to two projective spinors [ba '21a]:

$$
J_{b}^{a}=\frac{i}{\left(o_{C} \iota^{C}\right)}\left(o^{A} \iota_{B}+\iota^{A} o_{B}\right) \delta_{B^{\prime}}^{A^{\prime}}
$$

- J induces a splitting $T M \otimes \mathbb{C}=L \oplus \tilde{L}$. We say that J is integrable if L and \tilde{L} are involutive, and half-integrable if only one them is.
- Relativity: $[\tilde{L}, \tilde{L}] \subset \tilde{L} \quad \Leftrightarrow \quad \exists$ shear-free null geodesic congruence
- Gauge freedom:

conformal transf. + rescalings of spinors

- This defines a 'gauge group' G_{o}. Fields transforming under G_{o} are sections of vector bundles E.

The complex-conformal connection

Theorem ${ }_{\text {[ba }}{ }^{\prime 20}$, ba ${ }^{\prime 21 a]}$

- J induces a natural connection $\mathcal{C}_{a}=\mathcal{C}_{A A^{\prime}}$ on E (covariant under conformal and projective transformations)
- J is half-integrable iff $\mathcal{C}_{a} O^{B}=0$ or $\mathcal{C}_{a} \iota^{B}=0$, and integrable iff both of these hold
- Let $\tilde{\mathcal{C}}_{A^{\prime}}:=o^{A} \mathcal{C}_{A A^{\prime}}$ (partial connection). If $\mathcal{C}_{a} o^{B}=0$ and Weyl is algebraically special, then $\left[\tilde{\mathcal{C}}_{A^{\prime}}, \tilde{\mathfrak{C}}_{B^{\prime}}\right]=0$.

The complex-conformal connection

Theorem ${ }_{[b A}{ }^{\prime 20}$, ba ${ }^{21 a]}$

- J induces a natural connection $\mathcal{C}_{a}=\mathcal{C}_{A A^{\prime}}$ on E (covariant under conformal and projective transformations)
- J is half-integrable iff $\mathcal{C}_{a} O^{B}=0$ or $\mathcal{C}_{a} \iota^{B}=0$, and integrable iff both of these hold
- Let $\tilde{\mathcal{C}}_{A^{\prime}}:=o^{A} \mathcal{C}_{A A^{\prime}}$ (partial connection). If $\mathcal{C}_{a} o^{B}=0$ and Weyl is algebraically special, then $\left[\tilde{\mathcal{C}}_{A^{\prime}}, \tilde{\mathfrak{C}}_{B^{\prime}}\right]=0$.

Remarks:

- Construction of \mathcal{C}_{a} : combine Lee form of J with 'GHP' connection
- Integrability is encoded in (non-linear) parallel spinors
- $\left[\tilde{\mathcal{C}}_{A^{\prime}}, \tilde{\mathfrak{C}}_{B^{\prime}}\right]=0 \Rightarrow$ 'flat connection' \Rightarrow de Rham complex \& parallel frames

Remark

The condition $\mathcal{C}_{A A^{\prime}} O^{B}=0$ is not only conceptually clear but also very useful in practice.
(To illustrate this, work out the simpler example $\nabla_{A A^{\prime}} O^{B}=0$)

- The condition $[\tilde{L}, \tilde{L}] \subset \tilde{L}$ gives \tilde{L} the structure of a Lie algebroid $\Rightarrow \exists$ natural de Rham complex $\left(\Lambda^{\bullet}=\Lambda^{\bullet} \tilde{L}, \tilde{\mathrm{~d}}\right)$:

$$
0 \rightarrow \Lambda^{0} \rightarrow \Lambda^{1} \rightarrow \Lambda^{2} \rightarrow 0, \quad \tilde{\mathrm{~d}}^{2}=0
$$

- The condition $[\tilde{L}, \tilde{L}] \subset \tilde{L}$ gives \tilde{L} the structure of a Lie algebroid $\Rightarrow \exists$ natural de Rham complex $\left(\Lambda^{\bullet}=\Lambda^{\bullet} \tilde{L}, \tilde{\mathrm{~d}}\right)$:

$$
0 \rightarrow \Lambda^{0} \rightarrow \Lambda^{1} \rightarrow \Lambda^{2} \rightarrow 0, \quad \tilde{\mathrm{~d}}^{2}=0
$$

- Locally exact: if $\tilde{\mathrm{d}} \varphi=0$, then there is, locally, ψ such that $\varphi=\tilde{\mathrm{d}} \psi$. Note: there are integration "constants",

$$
\psi \rightarrow \psi+k, \quad \tilde{\mathrm{~d}} k=0
$$

Integration

- The condition $[\tilde{L}, \tilde{L}] \subset \tilde{L}$ gives \tilde{L} the structure of a Lie algebroid $\Rightarrow \exists$ natural de Rham complex $\left(\Lambda^{\bullet}=\Lambda^{\bullet} \tilde{L}, \tilde{\mathrm{~d}}\right)$:

$$
0 \rightarrow \Lambda^{0} \rightarrow \Lambda^{1} \rightarrow \Lambda^{2} \rightarrow 0, \quad \tilde{\mathrm{~d}}^{2}=0
$$

- Locally exact: if $\tilde{\mathrm{d}} \varphi=0$, then there is, locally, ψ such that $\varphi=\tilde{\mathrm{d}} \psi$. Note: there are integration "constants",

$$
\psi \rightarrow \psi+k, \quad \tilde{\mathrm{~d}} k=0
$$

- We need forms with values on E. The connection \mathcal{C} induces $\tilde{\mathrm{d}}^{\mathcal{C}}$.
- If Weyl $=$ alg. special, then $\left(\tilde{\mathrm{d}}^{\mathrm{e}}\right)^{2}=0$ and $\left(\Lambda^{\bullet} \otimes E, \tilde{\mathrm{~d}}^{\mathrm{e}}\right)$ is locally exact as well.
(In practice: if $\tilde{\mathcal{C}}^{A^{\prime}} \varphi_{A^{\prime} \ldots}=0$, then $\varphi_{A^{\prime} \ldots}=\tilde{\mathfrak{C}}_{A^{\prime}} \psi \ldots$)

The conformal Einstein equations

- The whole construction is conformally invariant
- Issue: the Einstein equations are not conformally invariant

The conformal Einstein equations

- The whole construction is conformally invariant
- Issue: the Einstein equations are not conformally invariant
\Rightarrow Study a more general system: the (closed) Einstein-Weyl equations. Equivalently: conformal Einstein equations
- The whole construction is conformally invariant
- Issue: the Einstein equations are not conformally invariant
\Rightarrow Study a more general system: the (closed) Einstein-Weyl equations. Equivalently: conformal Einstein equations
- Conformal structure $(M,[g])$ equipped with Weyl connection: $\nabla^{\mathrm{w}} g=2 \mathrm{w} \otimes g$, with $\mathrm{w}=\mathrm{d} \log \Omega$.
- The field equations are

$$
\operatorname{Ric}^{\mathrm{w}}=\lambda g
$$

- Reduction to ordinary Einstein: break conformal invariance $\Omega \equiv 1$

Theorem [BA '21b]: Suppose ($M,[g]$) satisfies the conformal Einstein equations and is (half-) algebraically special. Then the conformal metric is

$$
g_{a b}=\eta_{a b}+c_{a b}+h_{a b}(\Phi)
$$

 equations and is (half-) algebraically special. Then the conformal metric is

$$
g_{a b}=\eta_{a b}+c_{a b}+h_{a b}(\Phi)
$$

- $\eta_{a b}$ is conformally flat
 equations and is (half-) algebraically special. Then the conformal metric is

$$
g_{a b}=\eta_{a b}+c_{a b}+h_{a b}(\Phi)
$$

- $\eta_{a b}$ is conformally flat
- $c_{a b}$ is given by "integration constants" and is conf. half-flat
 equations and is (half-) algebraically special. Then the conformal metric is

$$
g_{a b}=\eta_{a b}+c_{a b}+h_{a b}(\Phi)
$$

- $\eta_{a b}$ is conformally flat
- $c_{a b}$ is given by "integration constants" and is conf. half-flat
- $h_{a b}(\Phi)$ is a Hertz potential (from perturbation theory!)

Theorem [BA '21b]: Suppose ($M,[g]$) satisfies the conformal Einstein equations and is (half-) algebraically special. Then the conformal metric is

$$
g_{a b}=\eta_{a b}+c_{a b}+h_{a b}(\Phi)
$$

- $\eta_{a b}$ is conformally flat
- $c_{a b}$ is given by "integration constants" and is conf. half-flat
- $h_{a b}(\Phi)$ is a Hertz potential (from perturbation theory!)
- Φ satisfies the "conformal hyper-heavenly (CHH) equation"

$$
\left(e^{a} e_{a}-18 \Psi_{2}\right) \Phi+\tilde{\Omega}\left(\tilde{\mathfrak{e}}_{A^{\prime}} \tilde{\mathrm{e}}_{B^{\prime}} \Phi\right)\left(\tilde{\mathrm{e}}^{A^{\prime}} \tilde{\mathrm{e}}^{B^{\prime}} \Phi\right)-4\left(\tilde{\mathrm{e}}^{A^{\prime}} \Omega\right)\left(\tilde{\mathrm{e}}^{B^{\prime}} \Phi\right)\left(\tilde{e}_{A^{\prime}} \tilde{\mathrm{e}}_{B^{\prime}} \Phi\right)=K
$$

\rightsquigarrow conformally inv., coordinate-free generalization of [Plebanski-Robinson '76]

Theorem [BA '21b]: Suppose ($M,[g]$) satisfies the conformal Einstein equations and is (half-) algebraically special. Then the conformal metric is

$$
g_{a b}=\eta_{a b}+c_{a b}+h_{a b}(\Phi)
$$

- $\eta_{a b}$ is conformally flat
- $c_{a b}$ is given by "integration constants" and is conf. half-flat
- $h_{a b}(\Phi)$ is a Hertz potential (from perturbation theory!)
- Φ satisfies the "conformal hyper-heavenly (CHH) equation"

$$
\left(e^{a} e_{a}-18 \Psi_{2}\right) \Phi+\tilde{\Omega}\left(\tilde{\mathfrak{e}}_{A^{\prime}} \tilde{\mathrm{e}}_{B^{\prime}} \Phi\right)\left(\tilde{\mathrm{e}}^{A^{\prime}} \tilde{\mathrm{e}}^{B^{\prime}} \Phi\right)-4\left(\tilde{\mathrm{e}}^{A^{\prime}} \Omega\right)\left(\tilde{\mathrm{e}}^{B^{\prime}} \Phi\right)\left(\tilde{e}_{A^{\prime}} \tilde{\mathrm{e}}_{B^{\prime}} \Phi\right)=K
$$

\rightsquigarrow conformally inv., coordinate-free generalization of [Plebanski-Robinson '76]

- The linear term

$$
\left(\mathrm{C}^{a} \mathfrak{C}_{a}-18 \Psi_{2}\right) \Phi=0
$$

is the Teukolsky equation.

Summary of key points:

- A choice of complex structure J determines conformally invariant connection
- Integrability of J encoded in (non-linear) parallel spinors. 'Hidden symmetries' are a consequence of this
- Reduction of (full, non-linear) conformal Einstein eqs. to CHH eq., and reconstruction of conformal structure
- Key facts from perturbation theory encoded, geometrically clear

Summary of key points:

- A choice of complex structure J determines conformally invariant connection
- Integrability of J encoded in (non-linear) parallel spinors. 'Hidden symmetries' are a consequence of this
- Reduction of (full, non-linear) conformal Einstein eqs. to CHH eq., and reconstruction of conformal structure
- Key facts from perturbation theory encoded, geometrically clear

Thanks!

References

－D．Bini，C．Cherubini，R．T．Jantzen and R．J．Ruffini，Prog．Theor．Phys． 107 （2002）
－M．Walker and R．Penrose，Commun．Math．Phys． 18 （1970），265－274
－B．Araneda，Class．Quant．Grav． 35 （2018）no．7， 075015
－R．Penrose，Gen．Rel．Grav． 7 （1976），31－52
－M．F．Atiyah，N．J．Hitchin and I．M．Singer，Proc．Roy．Soc．Lond．A 362 （1978）
－B．Araneda，arXiv：2106．01094
－B．Araneda，Lett．Math．Phys．110，no．10，2603－2638（2020）
－B．Araneda，arXiv：2110．06167
－J．F．Plebanski and I．Robinson，Phys．Rev．Lett． 37 （1976），493－495

