Radial and non-radial oscillation modes of compact stars

Dániel Barta

barta.daniel@wigner.hu

Wigner Research Centre for Physics, Budapest

12th Central European Relativity Seminar Budapest, February 22nd, 2021

In collaboration with: Balázs Kacskovics (Wigner RCP), Mátyás Vasúth (Wigner RCP)

Related papers: 1908.02808 & 1904.00907 Supported by NKFIH under OTKA grant agreement No. K138277

CONTENTS

SOURCES OF OSCILLATIONS

- Supernova explosion: triggers all kinds of oscillation modes
- **Starquakes** caused by craks in the crust or magnetic reconfiguration
- Accretion triggers oscillations
- **Tidal forces** in binary mergers
- Oscillation modes are *unstable* to gravitational wave emission \rightarrow *r*-mode or *f*-mode oscillations

NEUTRON STARS AS GW SOURCES

EQUILIBRIUM STELLAR MODEL

REALISTIC TABULATED EOS MODELS AND ASSOCIATED NEUTRON STARS

SIMPLEST CASE: LINEAR ADIABATIC RADIAL OSCILLATIONS

• **Perturbations in the fluid 4-velocity** can be expressed by

 $\delta u_{\text{radial}}^{\mu} = [e^{\nu_0/2}, -e^{\lambda_0 - \nu_0/2} \delta u_r, 0, 0] \text{ where } \delta u_r = dr/dt$

is associated with a displacement field in the Lagrangian representation: $\partial \xi / \partial t = \delta u_r$.

- 1. The perturbation equations are obtained from $\delta(\nabla_{\mu}T^{\mu\nu}) = 0$, $\delta(G_{\mu\nu} 8\pi T_{\mu\nu}) = 0$. Then, it is straightforward to compute the linear perturbations of any equilibrium quantity ($\delta\rho$, δp , ...).
- 2. With the assumption of harmonic time dependence, Chandrasekhar (1964) showed that: $\begin{aligned}
 & \text{FUNDAMENTAL EQUATION} \\
 & \text{FOR RADIAL PULSATION} \\
 \end{aligned}$ $\begin{aligned}
 & \overline{\left(\omega^{2}e^{\lambda_{0}-\nu_{0}}(p_{0}+\varepsilon_{0})\xi = \left[\frac{4}{r}\frac{dp_{0}}{dr} + 8\pi e^{\lambda_{0}}p_{0}(p_{0}+\varepsilon_{0}) - \frac{1}{p_{0}+\varepsilon_{0}}\left(\frac{dp_{0}}{dr}\right)^{2}\right]\xi - e^{-(\lambda_{0}+2\nu_{0})/2}\frac{d}{dr}\left[e^{(\lambda_{0}+3\nu_{0})/2}\frac{\Gamma p_{0}}{r^{2}}\frac{d}{dr}\left(r^{2}e^{-\nu_{0}/2}\xi\right)\right]}
 \end{aligned}$

a) The fluid at the center of the star is assumed to remain at rest: X = 0 at r = 0b) The Lagrangian change in the pressure vanishes at the surface: $\delta p = e^{\nu_0/2}r^{-2}\Gamma p_0 \frac{d}{dr} (r^2 e^{-\nu_0/2}X) \equiv 0$ at r = R

The fundamental equation together with its boundary conditions constitutes a Sturm–Liouville eigenvalue problem (SL-EVP) for a discrete set of scalar-valued eigenfunctions of radial displacement { $X_0(r), X_1(r), ..., X_j(r), ...$ } with their respective eigenvalues { $\omega_0^2, \omega_1^2, ..., \omega_j^2, ...$ }.

3. To find the eigenfrequencies, we convert the boundary value problem to an initial value problem by "shooting" method!

DYNAMICAL STABILITY

- If any of these ω_j^2 is negative for a particular star, the frequency is purely imaginary and therefore any perturbation of the star ($\sim e^{i\omega t}$) will grow exponentially in time. \Rightarrow dynamically unstabile
- If $\omega_j^2 > 0$, *the star is stable* against adiabatic radial perturbations (up to the *j*th excited oscillation mode)

Schematic illustration of the unstable branch of the mass-radius relation. [Barta 2021, CQG 38, 185002]

• The smallest eigenvalue ω_0^2 is associated with the *fundamental-mode frequency* of radial oscillations which *has no nodes* between the center and the stellar surface, whereas the first excited mode (j = 1) has a node, the second one (j = 2) has two, and so forth.

Eigenfunctions functions of radial displacement for the first three lowest-frequency oscillation modes $\{X_0(r), X_1(r), X_2(r)\}$ as a function of the fractional radius r/R obtained for SLy4 EoS at a central density $\rho_c = 0.547 \text{ GeV fm}^{-3}$. The displacement amplitude has been renormalized such that $X_0 = 1$. [Barta 2021, CQG **38**, 185002]

The frequencies of the fundamental mode (ν_0) and the first two lowest-frequency excited modes (ν_1 and ν_2) of radial oscillation as functions of central density (ε_c) for each EoS of nucleonic state (APR4, MPA1, MS1, SLy4) and hybrid nucleon–hyperon–quark state (H4, SQM1).

INTERPRETATION OF RESULTS (RADIAL OSCILLATION)

- 1. *The decay of the lowest-frequency eigenmodes is a general feature* (irrespective of the particular EoS): The f-mode frequency drops toward zero as the particular stellar model approaches its dynamical stability limit which, indeed, is indicated by the presence of an eigenmode with zero-frequency.
 - > The dynamical instability in stars with MPA1 and APR4 is exposed by the presence of a very low frequency of the fmode, which has dropped to less than 5% of that of the first excited mode, at central energy densities associated with
 the maximal-mass stable configurations.
- 2. The oscillation frequency of higher modes is always larger than that of a lower stable mode and for all modes it appears to decrease as the central energy density approaches the smallest possible value ε_{\min} of the particular stellar model
 - When the central energy density of NSs is approaching ε_{\min} , such compact objects become approximately homogeneous and due to their small mass.
- 3. Stellar models of softer EoSs have higher frequencies in the f-mode than the stiffer ones for the same central density.
 - Stellar models of softer EoSs are generally associated with more centrally condensed stars with larger average densities.

NON-RADIAL FLUID DISPLACEMENT AND PERTURBATION

• The perturbation equations are obtained in the following way:

 $\delta(\nabla_{\!\mu}T^{\mu\nu}) = 0, \qquad \delta(G_{\mu\nu} - 8\pi T_{\mu\nu}) = 0$

• **Perturbations** in the **4-velocity of a fluid element** δu^{μ} (associated with a mode) can be decomposed in <u>radial</u> and <u>angular</u> parts:

$$\delta \boldsymbol{u} = \sum_{l,m} \underbrace{[W_l \hat{\boldsymbol{r}} + V_l \nabla Y_m^l]}_{polar \text{ part: parity } (-1)^l} + \underbrace{U_l (\hat{\boldsymbol{r}} \times \nabla Y_m^l)]}_{axial \text{ part: parity } (-1)^{l+2}}$$

Parity is defined to be the *change in sign* under a combination of reflection in the equatorial plane and rotation by π .

ρ^{iωt}

where $W_l(r)$, $V_l(r)$, $U_l(r)$ are radial eigenfunctions.

A linear perturbation of scalar quantities ($\delta \rho$, δp , etc.) can be written as a sum of quasi-normal modes that are characterized by the indices (l,m) of the spherical harmonic functions Y_m^l and harmonic time dependence $e^{i\omega t}$.

The **frequency** ω is a *complex number*:

1. real part corresponding to the frequency of oscillations:

$$\operatorname{Re}(\omega) = \omega_n \sqrt{1 - \zeta_d^2}$$
, where ω_n is the natural frequency

2. imaginary part to the relaxation time: $1/\tau = \text{Im}(\omega) = -\omega_n \zeta_d$

PARITY OF PERTURBATIONS

• A general non-stationary asymmetric spacetime:

 $ds^{2} = -e^{\nu}dt^{2} + e^{\mu_{2}}dr^{2} + e^{\mu_{3}}d\theta^{2} + e^{\psi}(d\varphi - \omega dt - q_{2}dr - q_{3}d\theta)^{2}$

- Two different types (or parity) of perturbations of the spherically symmetric metric:
 - 1. Polar (or "magnetic-type") perturbation has "even parity" $\pi = (-1)^l$. It gives small increments to the already nonzero metric coefficients $(e^{\nu}, e^{\mu_2}, e^{\mu_3}, e^{\psi})$.
 - 2. Axial (or "electric-type") perturbation has "odd parity" $\pi = (-1)^{l+1}$. This perturbation induces *frame dragging* and *imparts a rotation* to the compact star. It gives small values to the metric coefficients (ω, q_2, q_3) that were zero in $(ds^2)_0$.

In non-rotating stars (i.e. up to $O(\Omega)$) the **polar** and **axial perturbations** remain completely *decoupled*.

Further more, for small-amplitude motions *there is no coupling* between the various spherical harmonics

• The geometry of spacetime inside and around the equilibrium configuration fluctuates in a manner described by 10 independent components ($h_{\mu\nu} = h_{\nu\mu}$).

 $\Rightarrow ds^2 = (ds^2)_0 + h_{\mu\nu} dx^{\mu} dx^{\nu}$

• The small-amplitude motion of the perturbed configuration is described by the Lagrangian displacements ξ^i .

The entire theory of non-radial pulsations consists of the study of the "equations of motion" which governs the 13 functions $\begin{cases} \xi^i(t,r,\theta,\varphi) - 3 \text{ Lagrangian displacement vector field} \\ h_{\mu\nu}(t,r,\theta,\varphi) - 10 \text{ metric perturbation} \end{cases}$

• Using an appropriate gauge (Regge–Wheeler):

,,Odd-parity" (or axial) mode: $\pi = (-1)^l _{l=2n+1}$	"Even-parity" (or polar) mode: $\pi = (-1)^l _{l=2n}$
$\xi_r = \xi_\theta = 0, \ \xi_\phi = U(r,t) \sin \theta \ \partial_\theta P_l(\cos \theta)$	$\xi^r = r^{-2}e^{-\lambda/2}WP_l, \ \xi^{\theta} = -r^{-2}V\partial_{\theta}P_l, \ \xi^{\theta} = 0$
$h_{\nu\mu}^{\text{axial}} = \begin{pmatrix} 0 & h_1 & 0 & h_0 \\ h_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ h_0 & 0 & 0 & 0 \end{pmatrix} \sin\theta \partial_\theta P_l(\cos\theta)$	$h_{\nu\mu}^{\text{polar}} = \begin{pmatrix} e^{\nu}H_0 & H_1 & 0 & 0 \\ H_1 & e^{\lambda}H_0 & 0 & 0 \\ 0 & 0 & r^2K & 0 \\ 0 & 0 & 0 & r^2\sin^2\theta K \end{pmatrix} Y_m^l$
Equation of motion: <i>fluid displacement metric perturbations</i> • set of coupled equations for $U(r,t)$ and $h_0(r,t)$, $h_1(r,t)$ • characterized by a <i>stacionary</i> , <i>differential rotation</i>	 Equation of motion: set of eqs. for V(r,t), W(r,t) and H₀(r,t), H₁(r,t), K(r,t) characterized by gravitational radiation

perturbation of odd parity cannot change p or $\rho \Rightarrow cannot cause stellar pulsation!$ (p and ρ are scalar fields; and all scalar spherical harmonics are of even parity) reduced to only 5 functions!

With the perturbed (polar mode) metric tensor:

$$ds^{2} = -e^{\nu}(1 + r^{\ell}H_{0}Y_{m}^{\ell}e^{i\omega t})dt^{2} - 2i\omega r^{\ell+1}H_{1}Y_{m}^{\ell}e^{i\omega t}dtdr + e^{\lambda}(1 - r^{\ell}H_{0}Y_{m}^{\ell}e^{i\omega t})dr^{2} + r^{2}(1 - r^{\ell}KY_{m}^{\ell}e^{i\omega t})(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

In an appropriate gauge $\xi^t = 0$, and the other components of the displacement 3-vector are given by

$$\xi^{r} = r^{l-1}e^{-\lambda/2}WY_{m}^{l}e^{i\omega t}, \qquad \xi^{\theta} = -r^{l-2}V\partial_{\theta}Y_{m}^{l}e^{i\omega t}, \qquad \xi^{\varphi} = -r^{l}(r\sin\theta)^{-2}V\partial_{\theta}Y_{m}^{l}e^{i\omega t}$$

lead to a ODE system of a set of 4 equations:

$$\begin{split} H'_{1} &= -r^{-1}[l+1+2Me^{\lambda}r^{-1}+4\pi r^{2}e^{\lambda}(p-\rho)]H_{1}+r^{-1}e^{\lambda}[H_{0}+K-16\pi(\rho+p)V], \\ K' &= r^{-1}H_{0}+\frac{1}{2}l(l+1)r^{-1}H_{1}-[(l+1)r^{-1}-\frac{1}{2}v']K-8\pi(\rho+p)e^{\lambda/2}r^{-1}W, \\ W' &= -(l+1)r^{-1}W+re^{\lambda/2}[\gamma^{-1}p^{-1}e^{-\nu/2}X-l(l+1)r^{-2}V+\frac{1}{2}H_{0}+K], \\ X' &= -lr^{-1}X+(\rho+p)e^{\nu/2}\{\frac{1}{2}(r^{-1}-\frac{1}{2}\nu')H_{0}+\frac{1}{2}[r\omega^{2}e^{-\nu}+\frac{1}{2}l(l+1)r^{-1}]H_{1}\\ &+\frac{1}{2}(\frac{3}{2}\nu'-r^{-1})K-\frac{1}{2}l(l+1)\nu'r^{-2}V-r^{-1}[4\pi(\rho+p)e^{\lambda/2}+\omega^{2}e^{\lambda/2-\nu}-\frac{1}{2}r^{2}(r^{-2}e^{-\lambda/2}\nu')']W \} \end{split}$$

The five perturbation function H_0 , H_1 , K, V, and W are not all independent!

As a consequence of Einstein's equation, these functions must satisfy the following relationship

 $\begin{bmatrix} 3M + \frac{1}{2}(l+2)(l-1)r + 4\pi r^3 p \end{bmatrix} H_0 = 8\pi r^3 e^{-\nu/2} X - \begin{bmatrix} \frac{1}{2}l(l+1)(M + 4\pi r^3 p) - \omega^2 r^3 e^{-(\lambda+\nu)} \end{bmatrix} H_1$ algebraic relation $+ \begin{bmatrix} \frac{1}{2}(l+2)(l-1)r - \omega^2 r^3 e^{-\nu} - r^{-1} e^{\lambda}(M + 4\pi r^3 p)(3M - r + 4\pi r^3 p) \end{bmatrix} K$ In this equation the perturbation function *X* is defined by

$$X = \omega^2 (\epsilon + p) e^{-\nu/2} V - \frac{p'}{r} e^{(\nu - \lambda)/2} W + \frac{1}{2} (\epsilon + p) e^{\nu/2} H_0$$

and V is to be thought of as the linear combination of H_1 , K, W, and X obtained by eliminating H_0 :

$$V = \omega^{-2} (\rho + p)^{-1} e^{\nu} \left[e^{-\nu/2} X + r^{-1} p' e^{-\lambda/2} W - \frac{1}{2} (\rho + p) H_0 \right]$$

Behavior of the perturbation functions of the ODE system inside the star.

PAST AND PRESENT COLLABORATIONS

Period	Partner institution	Collaborators	Research topic and scientific activity
April 2018	EBERHARD KARLS UNIVERSITÄT TÜBINGEN	Kostas Kokkotas	 Linear adiabatic radial oscillations of neutron stars: Study of "shooting" method for finding quasi-normal modes. Comparison of preliminary numerical results.
Oct. 2021 – present	LUTH Laboratoire de l'Univers et de ses Théories	Philippe Grandclément Jérôme Novak Éric Gourgoulhon	 For NS models (including fast-rotating or magnetized) and import EoS tables directly from CompOSE: LORENE (set of C++ classes) to solve partial differential equations by means of multi-domain spectral methods. KADATH library (a more generic spectral solver), designed to describe functions as a finite sum of orthogonal functions known as the basis functions.
Sept. 2021 – present	Wigner	György Wolf Mátyás Vasúth Balázs Kacskovics Gyula Fodor	Research project "Nuclear matter properties from heavy-ion collisions to compact stars", supported by OTKA grant agreement No. K138277

Thank you very much for your kind attention!

Dániel Barta

E-mail: <u>barta.daniel@wigner.hu</u>

