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SOURCES OF OSCILLATIONS

= Supernova explosion: triggers all kinds of oscillation modes

= Starquakes caused by craks in the crust or magnetic
reconfiguration

= Accretion triggers oscillations

= Tidal forces in binary mergers

= Oscillation modes are unstable to gravitational wave
emission — r-mode or f-mode oscillations




NEUTRON STARS AS GW SOURCES

“Burst” emission Continuous emission
Binary neutron star mergers Magnetar flares Pulsar glitches Non-axisymmetric mass Fluid part (oscillations)
(our safest bet for detection) (likely too weak) (likely too weak) quadrupole (“mountains”)

>




EQUILIBRIUM STELLAR MODEL

Einstein equations: G, = 8nT),
Energy—-momentum conservation: V,T#" =

<

Energy—momentum tensor (perfect fluid):
Tuv = (,0 + p)uuuv + P9uv

e

dm

THERMODYNAMIC
PROPERTIES

The energy density and the pressure of the fluid are related by
an equation of state: p = p(p) (zero temperature)

[®* M = m(R): total mass of the star

[* p(R) = 0: the isotropic pressure-vanishes
® (ev(®) =1 — 2M/R: normalizing the time
coordinate at spatial infinity

Gravitational mass: — = 4mtr?p e o 5
3 o N
Gravitational potential: & = 22+8TT°P 0 20
dr  r(r-2m) | STRUCTURE "
d 4rr3 % 2f 11.5
Hydrostatic equilibrium: %2 = — L3p)m+arrp) = =
dr r<(1-2M/r) a p=
(Tolman-Oppenheimer—Volkoff equation) o 1 11.0
O
At the stellar center (r = 0): ol los
[®* M(0) = 0: the mass function vanish |
[* po = p(0): central density is freely specified St s st T 00
BOUNDARY CONDITIONS coe e ° ' "
At the stellar surface (r = R): /¢ R (km)

Metric tensor: (ds?)y= =fe”dt? + e*dr? + r?(d6? + sin? 6 dg?)
here m(r) = r(1 — e~1)/2 is the ,,gravitational mass” inside radius r

Comoving coordinates:  u* = ¢"/2[—1,0,0,0]
Normalization condition: g, ufu"’ =

FLUID 4-VELOCITY
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SIMPLEST CASE: LINEAR ADIABATIC RADIAL OSCILLATIONS

* Perturbations in the fluid 4-velocity can be expressed by

Sub. 4. = [eY/2, —eto=v0/25y.,0,0] where Su, = dr/dt

Is associated with a displacement field in the Lagrangian representation: d¢/dt = du,..

1. The perturbation equations are obtained from & (VﬂT“") =0, §(G,y — 81Ty,) = 0. Then, itis straightforward to
compute the linear perturbations of any equilibrium quantity (ép, ép, ...).

2. With the assumption of harmonic time dependence, Chandrasekhar (1964) showed that: FUNDAMENTAL EQUATION
FOR RADIAL PULSATION
_ 4 dpy 1 (dpo\|, d po d  , _
2, o=V — |- A _ _ (Ao+2vo)/2 | ,(Ap+3vg)/2 _ Y ™ (..2 ,—Vy/2
we™0™Vo(py + £9)¢ rdr+8ne °po(Po + ) p0+£0<dr § —e ometo ar | € 0r=re ) dr(re; £)
a) The fluid at the center of the star is assumed to remain atrest: X =0atr =0 BOUNDARY CONDITIONS
b) The Lagrangian change in the pressure vanishes at the surface: §p = eVo/2r=2Tp, % (rze“’o/ZX) =0atr=R

The fundamental equation together with its boundary conditions constitutes a Sturm-Liouville eigenvalue problem (SL-EVP) for a discrete

set of scalar-valued eigenfunctions of radial displacement {X, (1), X, (r), ..., X;(r), ... } with their respective eigenvalues (w3, w3, ..., a)jz, .

3. To find the eigenfrequencies, we convert the boundary value problem to an initial value problem by “shooting™ method!



Eigenfunctions of radial displacement

M /My

Critical points

stable modes

B unstable modes

DYNAMICAL STABILITY

2

 If any of these w; is negative for a particular star, the frequency is purely

imaginary and therefore any perturbation of the star (~e'®®) will grow
exponentially in time. = dynamically unstabile

o |If wjz > 0, the star is stable against adiabatic radial perturbations (up to the jth
excited oscillation mode)

Schematic illustration of the unstable branch of the mass—radius relation. [Barta 2021, CQG 38, 185002]

R (km)

| — X, (fmode)

X, (1st mode)

X, (2nd mode)

« The smallest eigenvalue w§ is associated with the fundamental-mode frequency
of radial oscillations which has no nodes between the center and the stellar
surface, whereas the first excited mode (j = 1) has a node, the second one (j =
2) has two, and so forth.

Eigenfunctions functions of radial displacement for the first three lowest-frequency oscillation
modes {X,(r), X, (r), X, (r)} as a function of the fractional radius /R obtained for SLy4 EoS at a
central density p. = 0.547 GeV fm~3.The displacement amplitude has been renormalized such
that X, = 1. [Barta 2021, CQG 38, 185002]
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The frequencies of the fundamental mode (v,) and the first two lowest-frequency excited modes
(v, and v,) of radial oscillation as functions of central density (e.) for each EoS of nucleonic
state (APR4, MPA1, MS1, SLy4) and hybrid nucleon-hyperon—quark state (H4, SQM1).



INTERPRETATION OF RESULTS (RADIAL OSCILLATION)

The decay of the lowest-frequency eigenmodes is a general feature (irrespective of the particular EoS): The f-mode
frequency drops toward zero as the particular stellar model approaches its dynamical stability limit which, indeed, is
indicated by the presence of an eigenmode with zero-frequency.

»  The dynamical instability in stars with MPAL1 and APR4 is exposed by the presence of a very low frequency of the f-
mode, which has dropped to less than 5% of that of the first excited mode, at central energy densities associated with
the maximal-mass stable configurations.

The oscillation frequency of higher modes is always larger than that of a lower stable mode and for all modes it appears
to decrease as the central energy density approaches the smallest possible value €.,;, Of the particular stellar model

» When the central energy density of NSs is approaching e.i,, such compact objects become approximately
homogeneous and due to their small mass.

Stellar models of softer EoSs have higher frequencies in the f-mode than the stiffer ones for the same central
density.
»  Stellar models of softer EoSs are generally associated with more centrally condensed stars with larger average densities.



NON-RADIAL FLUID DISPLACEMENT AND PERTURBATION

» The perturbation equations are obtained in the following way:
§(y,T*)=0,  &(G, —8nT,) =0

« Perturbations in the 4-velocity of a fluid element éu* (associated with a mode) can be decomposed in
radial and anqular parts:

Parity is defined to be the

su= ) [WEAVWEL) + UGExVE]  eier [change in sion under
~ v ol ~ v o compination OT1 reriection
LLmpolar part: parity (-1)!  axial part: parity (-1)!t1 «—n

in the equatorial plane
where Wi(r), Vi(r), Uy(r) are radial eigenfunctions. and rotation by m.

» A linear perturbation of scalar quantities (6p, dp, etc.) can be written as a sum of quasi-normal modes
that are characterized by the indices (I,m) of the spherical harmonic functions Y.}, and harmonic time

dependence(e!®?)

I

The frequency w is a complex number:
1. real part corresponding to the frequency of oscillations:

Re(w) = w, /1 — {2, where w, is the natural frequency

2. imaginary part to the relaxation time: 1/t = Im(w) = —w,{y4




PARITY OF PERTURBATIONS

» A general non-stationary asymmetric spacetime:
ds? = —eVdt? + et2dr? + e#3d0? + e¥(dop — wdt — q,dr — q3d0)?

« Two different types (or parity) of perturbations of the spherically symmetric metric:
1. Polar (or “magnetic-type”) perturbation has “even parity” w = (—1)%. It gives small increments to

the already nonzero metric coefficients (eV, e#z, e#s, e‘/’).

2. Axial (or “electric-type”) perturbation has “odd parity” w = (—1)!*1. This perturbation induces
frame dragging and imparts a rotation to the compact star. It gives small values to the metric

coefficients (w, g5, q3) that were zero in (ds?),.

In non-rotating stars (i.e. up to O(L)) the polar and axial perturbations remain completely decoupled.
» Further more, for small-amplitude motions there is no coupling between the various spherical

harmonics



» The geometry of spacetime inside and around the equilibrium configuration fluctuates
In a manner described by 10 independent components (h,,, = h,,).
= ds® = (ds?) + hy, dx*dx”
 The small-amplitude motion of the perturbed configuration is described by the Lagrangian displacements &.

The entire theory of non-radial pulsations consists of the study of the “equations of motion” which

E'(t, 7,0, 9) — 3 Lagrangian displacement vector field

governs the 13 functions h,(t,7,6,9) — 10 metric perturbation

» Using an appropriate gauge (Regge—Wheeler):

,,Odd-parity” (or axial) mode: m = (—=1)!|,22n,+1 | ., Even-parity” (or polar) mode: m = (—1)%|;22n,

& =8 =0, & =U(r,t) sinf dgP; (cosH) & =r=2e M2wp, &€ = —r~2VayP, ¥ =0
0 hl 0 hO evHO H1 0 0
. hy 0 0 0] . 1 H ‘Hy 0 0
paxial — [ "1 sin @ dyP; (cos 6) pPoar — 1 €'l Y.
u l
0 0 0 0 i 0 0 T'ZK 0 e
hp 0 0 0 0 0 0 7r%sin?6K
Equation of motion: fluid displacement  metric perturbations ~ Equation of motion:
« set of coupled equations for U (7, t) and hy(r,t), h,(r,t) < setofeqgs.forV(r,t),W(r,t)and Hy(r,t),H;(r,t),K(r,t)
» characterized by a stacionary, differential rotation » characterized by gravitational radiation I

perturbation of odd parity cannot change p or p = cannot cause stellar pulsation!  reduced to only 5 functions!
(p and p are scalar fields; and all scalar spherical harmonics are of even parity)



With the perturbed (polar mode) metric tensor:
ds?2 = —e” (1 + r*HoY: ™) dt? — 2iwr™ H Y ™t dtdr +
+ M1 — " HoYt N dr? +12(1 — r* KYE ™) (d6? + sin® 0do?)
In an appropriate gauge ét = 0, and the other components of the displacement 3-vector are given by
§ =ri-le=A2yyletwt, &0 = =2y vl el@t 9 = —rl(rsinf)72Va,Y,Lel@t
lead to a ODE system of a set of 4 equations:
Hy = —r7'[I+ 1+ 2Me*r ™" + dnr?el(p — p)]H, + r~'e*[Ho)+ K — 16n(p + p)V],
K =r"'Hy+3l(l+ 1) 'H, —[(I + 1)r ' —3]K — 8np + p)e’*r ‘W,
W= —(+1r W +re’’ [y p e 2X — Ul + 1)/*V +3H, + K],
X =—-lr'X +(p+pe?5(r ' —3)H, + HrePe ™ + 3 + )r ]H,
+ 33V —r " HK = 31 + O)Wr 2V — r Yan(p + ple*’? + w?e?? 7Y — Lri(r~2e M2y IW )
The five perturbation function Hy, H{, K, I/, and W are not all independent!

As a consequence of Einstein’s equatigr, these functions must satisfy the following relationship

[3M + 51+ 21— 1)yr + 4nr3p@/= 8arde™"?X — [FUI + 1)(M + 4nr’p) — w?r’e”**YH,

algebraic relation + [F + 20 — 1)r — @*re™ — r~ e M + 4nr’p)(3M — r + 4nr’p)]K




In this equation the perturbation function X is defined by

X = w?(e+ple V2V — %e(”_}‘}f”ﬁﬁr + %(E + p)e?/2Hy

and V is to be thought of as the linear combination of H;, K, W, and X obtained by eliminating H,:

V=w?(p +p)_]€"[e"’ﬂX+ ripe W —1(p —[-p}HD]
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Behavior of the perturbation functions of the ODE system inside the star.



PAST AND PRESENT COLLABORATIONS

Period Partner institution Collaborators Research topic and scientific activity
April 2018 EBERHARD KARLS Linear adiabatic radial oscillations of neutron stars:
UNIVERS [TAT Kostas Kokkotas * Study of "shooting" method for finding quasi-normal
TUBINGEN modes. - |
' ' ' * Comparison of preliminary numerical results.
Oct. 2021 — For NS models (including fast-rotating or magnetized)
present - ) and import EoS tables directly from CompOSE:
2 o Philippe Grandclément |« 1 ORENE (set of C++ classes) to solve partial
I . VatOII‘e LUTH| ., . Novak differential equations by means of multi-domain
aeb Jerome Nova spectral methods.

Laboratoire de l’Univers et de ses Théories Efic GoufgoulhOﬁ ’ . ATH hbrary. (a mOI'C. genetic SPCCFI'ZII SOIVCI'),
designed to describe functions as a finite sum of
orthogonal functions known as the basis functions.

Sept. 2021 — Gyorgy Wolf Research project “Nuclear matter properties from heavy-ion
present Matyas Vastuth collisions to compact stars’, supported by OTKA grant

Quisner

Balazs Kacskovics

Gyula Fodor

agreement No. K138277
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