Sharp asymptotics for Teukolsky master equation on Kerr spacetimes

Siyuan Ma

CERS 12, Budapest February 21–23, 2022

Siyuan Ma

Sharp asymptotics for TME in Kerr

Feb. 22

イロト イヨト イヨト イ

Aim: to prove the precise late time asymptotics for TME, satisfied by the extreme Newman–Penrose components of the spin-|s| field, in the Kerr exterior:

$$0 = \Sigma \Box_g \psi_s + \frac{2is\cos\theta}{\sin^2\theta} \partial_{\phi} \psi_s - (s^2\cot^2\theta + s)\psi_s - 2ias\cos\theta \partial_t \psi_s$$
$$-2s\frac{r^3 - 3Mr^2 + a^2r + a^2M}{\Delta} \partial_t \psi_s - 2s(r-M)\partial_r \psi_s + 2s\frac{a(r-M)}{\Delta} \partial_{\phi} \psi_s.$$

2/10

Aim: to prove the precise late time asymptotics for TME, satisfied by the extreme Newman–Penrose components of the spin-|s| field, in the Kerr exterior:

$$0 = \Sigma \Box_g \psi_s + \frac{2is\cos\theta}{\sin^2\theta} \partial_\phi \psi_s - (s^2\cot^2\theta + s)\psi_s - 2ias\cos\theta \partial_t \psi_s$$
$$-2s\frac{r^3 - 3Mr^2 + a^2r + a^2M}{\Delta} \partial_t \psi_s - 2s(r - M)\partial_r \psi_s + 2s\frac{a(r - M)}{\Delta} \partial_\phi \psi_s.$$

Motivation for asymptotics for TME

It determines the dynamics of the scalar field, Dirac field, Maxwell field and linearized gravity.

Aim: to prove the precise late time asymptotics for TME, satisfied by the extreme Newman–Penrose components of the spin-|s| field, in the Kerr exterior:

$$0 = \Sigma \Box_g \psi_s + \frac{2is\cos\theta}{\sin^2\theta} \partial_\phi \psi_s - (s^2\cot^2\theta + s)\psi_s - 2ias\cos\theta \partial_t \psi_s$$
$$-2s\frac{r^3 - 3Mr^2 + a^2r + a^2M}{\Delta} \partial_t \psi_s - 2s(r - M)\partial_r \psi_s + 2s\frac{a(r - M)}{\Delta} \partial_\phi \psi_s.$$

Motivation for asymptotics for TME

- It determines the dynamics of the scalar field, Dirac field, Maxwell field and linearized gravity.
- Sufficient upper bound of decay is essential for Kerr stability conjecture.

Aim: to prove the precise late time asymptotics for TME, satisfied by the extreme Newman–Penrose components of the spin-|s| field, in the Kerr exterior:

$$0 = \Sigma \Box_g \psi_s + \frac{2is\cos\theta}{\sin^2\theta} \partial_\phi \psi_s - (s^2\cot^2\theta + s)\psi_s - 2ias\cos\theta \partial_t \psi_s$$
$$-2s\frac{r^3 - 3Mr^2 + a^2r + a^2M}{\Delta} \partial_t \psi_s - 2s(r - M)\partial_r \psi_s + 2s\frac{a(r - M)}{\Delta} \partial_\phi \psi_s.$$

Motivation for asymptotics for TME

- It determines the dynamics of the scalar field, Dirac field, Maxwell field and linearized gravity.
- Sufficient upper bound of decay is essential for Kerr stability conjecture.

Appropriate *lower* bound of decay is indispensable for Strong Cosmic Censorship conjecture concerning the instability of the Kerr Cauchy horizon.

Sharp asymptotics for TME in Kerr

Late time tails for scalar wave (s = 0) on Schwarzschild

Scalar wave eq $-\mu^{-1}\partial_t^2\psi + r^{-2}\partial_r(\mu r^2\partial_r\psi) + r^{-2}\Delta_{S^2}\psi = 0$, $\mu = 1 - \frac{2M}{r}$.

2

Late time tails for scalar wave (s = 0) on Schwarzschild

Scalar wave eq
$$-\mu^{-1}\partial_t^2\psi + r^{-2}\partial_r(\mu r^2\partial_r\psi) + r^{-2}\Delta_{S^2}\psi = 0$$
, $\mu = 1 - \frac{2M}{r}$.

In Minkowski, due to the strong Huygens' principle, the scalar field ψ arising from comp. supp. initial data vanishes at any finite radius for t sufficiently large.

• • • • • • • • • • • •

Late time tails for scalar wave (s = 0) on Schwarzschild

Scalar wave eq
$$-\mu^{-1}\partial_t^2\psi + r^{-2}\partial_r(\mu r^2\partial_r\psi) + r^{-2}\Delta_{S^2}\psi = 0$$
, $\mu = 1 - \frac{2M}{r}$

In Minkowski, due to the strong Huygens' principle, the scalar field ψ arising from comp. supp. initial data vanishes at any finite radius for t sufficiently large.

Backscattering due to an effective curvature potential: for $\Psi = r\psi$

$$-\mu^{-1}\partial_u\partial_v\Psi+\frac{\Delta_{S^2}\Psi}{r^2}-\frac{2M}{r^3}\Psi=0,$$

where $\partial_u = \partial_t - \mu \partial_r$ and $\partial_v = \partial_t + \mu \partial_r$ with

$$du = \frac{1}{2} (dt - \mu^{-1} dr), dv = \frac{1}{2} (dt + \mu^{-1} dr).$$

< □ > < □ > < □ > < □ > < □ >

Idea of proving precise asymptotics for $\ell=0$ mode

Fix a hyperboloidal foliation (ho, au, ω), and assume some pointwise decay estimate.

Global conservation law for integral of radiation field along $\mathscr{I}^+_{[\tau_0,\infty)}$

Scalar wave eq is $\partial_{\rho}(\mu r^2 \partial_{\rho} \psi) = \partial_{\tau} H[\psi]$. Integrate in $\mathscr{D}_{[\tau_0,\infty)}$,

・ロト ・日下・ ・ ヨト・

$$\int_{\mathscr{I}^+_{(\tau_0,\infty)}} \Psi = \int_{\Sigma_{\tau_0}} H[\psi]. \qquad (1)$$

Idea of proving precise asymptotics for $\ell=0$ mode

Fix a hyperboloidal foliation (ho, au, ω), and assume some pointwise decay estimate.

Global conservation law for integral of radiation field along $\mathscr{I}^+_{[\tau_0,\infty)}$

Scalar wave eq is $\partial_{\rho}(\mu r^2 \partial_{\rho} \psi) = \partial_{\tau} H[\psi]$. Integrate in $\mathscr{D}_{[\tau_0,\infty)}$,

$$\int_{\mathscr{I}^{+}_{[\tau_{0},\infty)}} \Psi = \int_{\Sigma_{\tau_{0}}} H[\psi]. \qquad (1)$$

イロト イ団ト イヨト イヨト

Remark

This computes the integral of radiation field along $\mathscr{I}^+_{[\tau_0,\infty)}$ in terms of initial data.

Precise asymptotics of the $\ell = 0$ mode of Ψ

Recall
$$\mu^{-1}\partial_u\partial_v\Psi = -2Mr^{-3}\Psi.$$

 $v^3\partial_v\Psi(u,v) - v^3\partial_v\Psi(u_{\Sigma_{\tau_0}}(v),v)$
 $= -\int_{u_{\Sigma_{\tau_0}}(v)}^u M\mu \frac{v^3}{r^3}\Psi du$
 $= -M\int_{\mathscr{I}_{[\tau_0,\tau(u,\infty)]}^+}^{+} \Psi + l.o.t.$
 $= -M\int_{\mathscr{I}_{[\tau_0,\infty)}^+}^{+} \Psi + l.o.t.$

・ロト ・日下・ ・ ヨト・

~	•		•	-
~	13.4	 -	n /	
	Iν		IV	

E ► < E ► E </p>
Feb. 22

Precise asymptotics of the $\ell=0$ mode of Ψ

Recall
$$\mu^{-1}\partial_{u}\partial_{v}\Psi = -2Mr^{-3}\Psi$$
.
 $v^{3}\partial_{v}\Psi(u,v) - v^{3}\partial_{v}\Psi(u_{\Sigma_{\tau_{0}}}(v),v)$
 $= -\int_{u_{\Sigma_{\tau_{0}}}(v)}^{u} M\mu \frac{v^{3}}{r^{3}}\Psi du$
 $= -M\int_{\mathscr{I}_{[\tau_{0},\tau(u,\infty)]}^{+}} \Psi + l.o.t.$
 $= -M\int_{\mathscr{I}_{[\tau_{0},\infty)}^{+}} \Psi + l.o.t.$
 $\Sigma_{\tau_{0}}$

 \rightsquigarrow precise asymptotics of $\partial_{v}\Psi(u,v)$ in terms of

- initial data asymptotcis of $v^3 \partial_v \Psi$ and
- (a) integral of radiation field along $\mathscr{I}^+_{[au_0,\infty)}$ (or of the initial data) ;

~ .			
<u> </u>	/11 D D	- N.	15
	/uall		

Precise asymptotics of the $\ell = 0$ mode of Ψ

Recall
$$\mu^{-1}\partial_u \partial_v \Psi = -2Mr^{-3}\Psi$$
.
 $v^3 \partial_v \Psi(u, v) - v^3 \partial_v \Psi(u_{\Sigma_{\tau_0}}(v), v)$
 $= -\int_{u_{\Sigma_{\tau_0}}(v)}^{u} M\mu \frac{v^3}{r^3} \Psi du$
 $= -M \int_{\mathscr{I}_{[\tau_0, \tau(u, \infty)]}^+} \Psi + l.o.t.$
 $= -M \int_{\mathscr{I}_{[\tau_0, \infty)}^+} \Psi + l.o.t.$
 \longrightarrow precise asymptotics of $\partial_v \Psi(u, v)$ in terms of
 \bullet initial data asymptotics of $v^3 \partial_v \Psi$ and

(a) integral of radiation field along $\mathscr{I}^+_{[\tau_0,\infty)}$ (or of the initial data);

 \rightsquigarrow precise late time asymptotics of Ψ in terms of initial data.

Feb. 22

Price's law formulation of sharp decay for TME

As both upper and lower bounds for the decay rates

M.–Zhang (arXiv: 2108.03148, 2111.04489): $\mathfrak{s} = 0, 1, 2$

Schw.	towards null infinity	finite radius region
$r^{-\mathfrak{s}-s}\psi_s$	$r^{-1-\mathfrak{s}-s}\tau^{-2-\mathfrak{s}+s}$	$V^{-3-2\mathfrak{s}}$
$(r^{-\mathfrak{s}-s}\psi_s)_{\geq \ell}$	$r^{-1-\mathfrak{s}-s}\tau^{-2-\ell+s}$	$v^{-3-2\ell}$
total power	$-3 - \mathfrak{s} - \ell$	$-3-2\ell$

Kerr	towards null infinity	finite radius region
$r^{-\mathfrak{s}-s}\psi_s$	$r^{-1-\mathfrak{s}-s}\tau^{-2-\mathfrak{s}+s}$	$V^{-3-2\mathfrak{s}}$
total power	$-3-2\mathfrak{s}$	$-3-2\mathfrak{s}$

Additionally, on \mathscr{H}^+ , if $\mathfrak{s} \neq 0$ and am = 0, the decay of $\psi_{+\mathfrak{s}}$ is faster by v^{-1} . (See **Barack–Ori '99**, but fails for $\mathfrak{s} = \frac{1}{2}$ by arXiv:2008.11429). The coefficients in the global late time asymptotics are generically nonzero.

イロト イヨト イヨト イヨト

Ingredients of the proof

- We use spin-weighted spherical harmonic mode decomposition. For Kerr, because of a² sin² θ∂²_τ + ias cos θ∂_τ part in TME operator, one has to treat the mode coupling in the evolution. (Estimates for modes are coupled.)
- Extension of the approach in M. '17, Andersson-Bäckdahl-Blue-M. '19 on Kerr linear stability.
- Global conservation law for null infinity integral of radiation field is crucial.
- Application of Teukolsky–Starobinsky identities is fundamental:

$$\begin{split} (\mathring{\eth}' - ia\sin\theta\partial_{\tau})^{2\mathfrak{s}}\psi_{+\mathfrak{s}} &\approx \Delta^{\mathfrak{s}}(\mu^{-1}V)^{2\mathfrak{s}}(\Delta^{\mathfrak{s}}\psi_{-\mathfrak{s}}), \\ (\mathring{\eth} + ia\sin\theta\partial_{\tau})^{2\mathfrak{s}}\psi_{-\mathfrak{s}} &\approx Y^{2\mathfrak{s}}\psi_{+\mathfrak{s}}. \end{split}$$

7/10

• • • • • • • • • • •

Applications to the precise asymptotics

- Higher modes of solutions to TME, see Csukás-Rácz-Tóth '19 etc.
- Semilinear problems, e.g., $\Box_g \psi = \pm \psi^k$ or satisfying null condition, see **Bizón–Chmaj–Rostworowski–Zajac '07–'09**, **Tohaneanu '21**.
- Quasilinear problems.
- Strong Cosmic Censorship.

8/10

Applications to the precise asymptotics

- Higher modes of solutions to TME, see Csukás-Rácz-Tóth '19 etc.
- Semilinear problems, e.g., $\Box_g \psi = \pm \psi^k$ or satisfying null condition, see **Bizón–Chmaj–Rostworowski–Zajac '07–'09**, **Tohaneanu '21**.
- Quasilinear problems.
- Strong Cosmic Censorship.

谢谢!

イロト イ団ト イヨト イヨト

M.–Zhang (arXiv: 2108.03148): $\mathfrak{s} = 0, 1, 2$

• Let ψ_s be the spin s components on Schwarzschild satisfying TME. Then,

$$r^{-2\mathfrak{s}}\psi_{+\mathfrak{s}} - \mu^{\mathfrak{s}}\frac{\nu + (2\mathfrak{s} + 1)\tau}{\nu^{2\mathfrak{s} + 2\tau^{2}}}\mathsf{Q}_{\mathsf{init}}| \lesssim \nu^{-2\mathfrak{s} - 1}\tau^{-2-\varepsilon} \\ |\psi_{-\mathfrak{s}} - \frac{(2\mathfrak{s} + 1)\nu + \tau}{\nu^{2}\tau^{2\mathfrak{s} + 2}}\mathsf{Q}_{\mathsf{init}}| \lesssim \nu^{-1}\tau^{-2\mathfrak{s} - 2-\varepsilon},$$

$$(2)$$

and extra τ^{-1} for $\psi_{+\mathfrak{s}}$ on \mathscr{H}^+ if $\mathfrak{s} \neq 0$.

• If supported on $\geq \ell$ modes, then extra $C_{\mathfrak{s},\ell}h_{\mathfrak{s},\ell}r^{\ell-\mathfrak{s}}\tau^{-\ell+\mathfrak{s}}$ decay, $h_{\mathfrak{s},\ell}r^{\ell-\mathfrak{s}}$ a zero energy mode solution to TME of the ℓ mode of $\psi_{-\mathfrak{s}}$.

9/10

M.–Zhang (arXiv: 2111.04489): $\mathfrak{s} = 0, 1, 2$

Let ψ_s be the spin *s* components on Kerr satisfying TME. Assume a Morawetz estimate for TME on subextreme Kerr. Then,

$$\begin{aligned} |(r^{2}+a^{2})^{-\mathfrak{s}}\psi_{+\mathfrak{s}} - \frac{\nu + (2\mathfrak{s}+1)\tau}{\nu^{2\mathfrak{s}+2\tau^{2}}} \sum_{-\mathfrak{s} \le m \le \mathfrak{s}} f_{m} \mathsf{Q}_{\mathsf{init},m}| &\lesssim \nu^{-2\mathfrak{s}-1}\tau^{-2-\varepsilon} \\ |\psi_{-\mathfrak{s}} - \frac{(2\mathfrak{s}+1)\nu + \tau}{\nu^{2}\tau^{2\mathfrak{s}+2}} \mathsf{Q}_{\mathsf{init}}| &\lesssim \nu^{-1}\tau^{-2\mathfrak{s}-2-\varepsilon}, \end{aligned}$$
(3)

and extra τ^{-1} for $\psi_{+\mathfrak{s}}$ on \mathscr{H}^+ if $\mathfrak{s} \neq 0$ and am = 0. Here, $f_m = \mu^{\mathfrak{s}} + amO(r^{-1})$, and $Q_{\text{init},m}$ and Q_{init} are calculated from initial data.

~ ~ ~			
- S P	/II.2 D	- 11/	15
	vuan		

10/10