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Constraint Equations

An initial data set is a triple (M, g ,K ), where (M, g) is a Riemannian
manifold and K a symmetric 2-tensor that satisfy the constraint equations

R(g) + (trgK )2 − |K |2g + 2Λ = 16πµ,

divg (K − ((trgK )g)) = 8πJ,

for a function µ and one-form J on M, where R(g) denotes the scalar
curvature of (M, g) and Λ is called the cosmological constant.

Initial data sets arise naturally in the context of General Relativity as
spacelike hypersurfaces (M, g) of a spacetime (M, g) with second
fundamental form K and (future) timelike unit normal ~n, and

µ = G(~n,~n) J = G(~n, ·),

where G denotes the Einstein tensor of (M, g).
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A family of initial data sets

In the following, we will always assume that (M, g ,K ) is of the form
M = [r0,∞)× Sn−1 with

g = N(r , ·)2dr2 + r2σ(r),
K = k(r , ·)N(r , ·)2dr2 + p(r , ·)r2σ(r),

where N, k, p are differentiable functions on M, and {σ(r)}r∈[r0,∞) is a
family of metrics on Sn−1 that satisfy

- (exponentially fast) decay towards the round metric dΩ2 as r →∞,
- trσσ′ = 0. (cf. Mantoulidis–Schoen [4])

Rotationally symmetric case:
Assume additionally that N, k, p only depend on r and σ(r) = dΩ2.
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A family of initial data sets

In this case, the constraint equations can be written as (cf. Bartnik [1],
Rácz [6]):

2(n − 1)
r ∂r N =2N2

r2 ∆σ(r)N −
R(σ(r))

r2 N3 + (n − 1)(n − 2)
r2 N + N

4 |σ
′|2σ(r)

− (2(n − 1)kp + (n − 1)(n − 2)p2)N3 + (16πµ− 2Λ)N3,

(n − 1)∂r p =(n − 1)
r (k − p)− 8πJ0,

(k − p)
N

∂

∂x I N =(n − 2) ∂

∂x I p + ∂

∂x I k + 8πJI .
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Asymptotic flatness

An initial data set (M, g ,K ) within the above familiy is asymptotically
flat, iff

N = 1 + O2(r−a), k = O2(r−b), p = O2(r−b),
τAB := σ(r)AB − dΩ2

AB = O2(r−a),

for a > n−2
2 and b > n

2 , and furthermore µ, J ∈ L1(M).
For n = 3 we find

EADM = 1
16π lim

r→∞

∫
S2

2
r (N2 − 1)r2 dVS2 ,

PADM,i = 1
4π lim

r→∞

∫
S2

p x i

|x | r
2 dVS2
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Geometry of the leaves

For an initial data set (M, g ,K ) within the above familiy, and for
Σr := {r} × Sn−1, we have

∣∣∣ ~H∣∣∣2
g

= (n − 1)2

r2

( 1
N2 − r2p2

)
.

In particular, for n = 3, their Hawking energy is given as

mH(Σr ) = r
2

(
1− 1

4π

∫
S2

( 1
N2 − r2p2

)
dVσ(r)

)
.
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Penrose-type total energy bounds

We now assume that (M, g ,K ) is asymptotically flat with n = 3 and
additionally require

- the (DEC), i.e. µ ≥ |J |g ,
- r0N(r0) |p(r0)| = 1 (the inner boundary is a (generalized) apparent

horizon),
- {Σr}r∈(r0,∞) satisfies a strictly outer untrapped condition

rN |p| < 1

Recall that

mH(Σr0) =

√
|Σr0 |
16π ,

and lim
r→∞

mH(Σr0) = EADM .
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Penrose-type total energy bounds

Proposition
Under the above assumptions, we have

∂

∂r mH(Σr ) ≥ 0.

Proof:
Compute that

∂

∂r mH(Σr ) ≥ 1
8π

∫ ( |∇σN|2

N2 + s2

8N2 |σ
′|2σ

)
+
∫

s2(µ− N−1 |J0|)

≥
∫

s2(µ− |J|g )
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Penrose-type total energy bounds

Corollary
Let (M, g ,K ) satisfy all of the above. Then√

|Σr0 |
16π ≤ EADM ,

and equality holds, if and only if (M, g ,K ) embedds into the
Schwarzschild spacetime as a rotationally symmetric slice.

- Since rigidity implies rotational symmetry, we have EADM = mADM
(i.e. |PADM | = 0),

- Proof of rigidity by reducing to rotational symmetry (cf. Mars [5]),
- the monotonity of mH does not involve the full dominant energy

scalar µ− |J|g
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Penrose-type total energy bounds

Consider the quantity

Φ(r) :=
r∫

r0

∫
S2
|J|g − N−1 |J0| dVσ(r),

which is non-negative and well-defined for r →∞ since J integrable.
Notice thate Φ(r) ≡ 0 in rotational symmetry and moreover

∂

∂r (mH(Σr )− Φ(r)) ≥
∫

s2(µ− |J|g ) ≥ 0

under the above assumptions.
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Penrose-type total energy bounds

Corollary
Let (M, g ,K ) satisfy all of the above. Then√

|Σr0 |
16π +

∞∫
r0

∫
S2
|J|g − N−1 |J0| dVσ(r) ≤ EADM ,

and equality holds, if and only if (M, g ,K ) has vanishing dominant energy
scalar, i.e. µ = |J|g , with |J0| = 0, and N = N(r), σ(r) = dΩ2.

- Can replace Φ by any 0 ≤ f ≤ Φ, and recover the full ridigity
statement for a large class of examples,

- Can we relate the above integral to |PADM |? (For a choice of f ?)
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Construction of initial data sets

Recall that in this familiy of metrcis, the constraint equations can be
written as

2(n − 1)
r ∂r N =2N2

r2 ∆σ(r)N −
R(σ(r))

r2 N3 + (n − 1)(n − 2)
r2 N + N

4 |σ
′|2σ(r)

− (2(n − 1)kp + (n − 1)(n − 2)p2)N3 + (16πµ− 2Λ)N3,

(n − 1)∂r p =(n − 1)
r (k − p)− 8πJ0,

(k − p)
N

∂

∂x I N =(n − 2) ∂

∂x I p + ∂

∂x I k + 8πJI .
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The rotationally symmetric case

In rotational symmetry, the equations decouple and simplify to

2(n − 1)
r ∂r N =(n − 1)(n − 2)

r2 N(1− N2) + N3(16πµ− 2Λ)

− N3(2(n − 1)kp + (n − 1)(n − 2)p2),

(n − 1)∂r p =(n − 1)
r (k − p)− 8πJ0,

0 =JI .

Also considered by Bartnik–Isenberg [2] in the context of dynamical
horizons and by Csukás–Rácz [3] in a near Schwarzschild vacuum context.
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The rotationally symmetric case

Setting h(r) := 1 + 2
n(n−2) Λr2 − 1

N2 , the constraint equations become

h′(r) = −(n − 2)
r h + c1(r),

p′(r) = −1
r p(r) + c2(r).

with

c1(r) := −r(2kp + (n − 2)p2) + r
(n − 1)16πµ,

c2(r) = k
r −

8π
(n − 1)J0

with k, µ, J0 given.
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The rotationally symmetric case

For k, µ, J0 are given (with appropiate decay), wa can first solve for p,
then for h. This yields

1
N2 = 1 + 2

n(n − 2)Λr2 − 1
rn−2

C0 −
∞∫
r

c1(s)sn−2 ds

 ,
p = −1

r

∞∫
r

c2(s)s ds,

where the constant C0 may be chosen freely, and N, p indeed satisfy the
right decay, such that (M, g ,K ) is asymptotically flat.
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The rotationally symmetric case

In the context of two-parameter foliations of spacetimes (cf. Rácz [7]), we
also find the following result in rotational symmetry:
If we choose J0 = 0, so vanishing momentum density J ≡ 0, then
(M, g ,K ) embedds into (M, g) with M = R× I × Sn−1 and

g = −f dt2 + 1
f dr2 + r2 dΩ2,

with f (r) := 1
N2 − r2p2.
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Thank you!
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Rácz, I., Constraints as evolutionary systems. Class. Quantum Gravity, 33, 015014
(2016)

Rácz, I., Cauchy problem as a two-surface based ‘geometrodynamics’. Class.
Quantum Gravity, 32 015006 (2015)

Markus Wolff Bibliography February 21, 2022 15 / 15


	Introduction
	Penrose-type total energy bounds
	Construction of initial data sets
	Bibliography

