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Gravitational instantons

▶ Ricci-flat 4-manifolds (M, g) with Riemannian signature.

▶ Non-compact and complete, curvature decays “sufficiently
fast”.

▶ Different possibilities depending on volume growth rate: ALE
(“asymptotically locally Euclidean”), AF (“asymptotically
flat”), ALF (“asymptotically locally flat”), ALG, ALH.

▶ Some known examples are Taub–NUT (ALF), Taub-bolt
(ALF), Eguchi–Hanson (ALE), Riemannian Kerr (AF) and
Chen–Teo (AF).



Gravitational instantons

▶ It has long been conjectured that the only AF gravitational
instantons are flat space R3 × S1 along with the Riemannian
Kerr family (black hole uniqueness conjecture in Riemannian
signature).1

▶ Proven wrong by the Chen–Teo instanton in 2011.2

▶ However, assuming the same topology as Riemannian Kerr,
along with an S1-symmetry with only isolated fixed points, we
have uniqueness of Riemannian Kerr.3

▶ Recently, the Chen–Teo instanton was shown to be
Hermitian,4 and Hermitian AF/ALF instantons with toric
symmetry were classified.5

1Gibbons and Hawking 1979; Lapedes 1980.
2Chen and Teo 2011.
3Simon 1995.
4Aksteiner and Andersson 2022.
5Biquard and Gauduchon 2021.



Symmetries

▶ All known AF, ALF and ALE examples have symmetries.

▶ S1-symmetry: a Killing field generating a periodic flow (often
assumed to have bounded norm).

▶ Toric (S1 × S1) symmetry: two commuting Killing fields
generating periodic flows.

▶ Restrict attention to AF/ALF from now on.



Toric symmetry

v0 v1 v2 v3 v4

▶ We have two commuting Killing fields ξ1 and ξ2.

▶ We have an invariant of toric gravitational instantons, known
as the rod structure.

▶ A sequence of vectors vi = (v1i , v
2
i ) ∈ Z2.

▶ Means that a linear combination v1i ξ1 + v2i ξ2 vanishes along a
2-surface in the manifold.

▶ The rod structure entirely determines the topology, given
some assumptions (M is simply connected, etc.).



Obstructions to rod structures, an example

(0, 1) (1, 0) (−a, 1) (1− ab, b)

▶ A general rod structure with three turning points can be
written in the way above, with a, b ∈ Z.

▶ Many of the values of (a, b) can be ruled out using index
theorems.



Obstructions to rod structures, an example

a

b
▶ From the assumption of

Ricci-flatness, the Hitchin–Thorpe
inequality rules out most values of
(a, b).

▶ Pink corresponds to Chen–Teo.



S1-symmetry

▶ We have a single Killing field ξ, whose vanishing locus is the
fixed point set Z.

▶ The connected components of Z are either 0-dimensional
(“nuts”) or 2-dimensional (“bolts”).

▶ Hypersurfaces near infinity are circle fibrations over either S2

or RP2; restrict attention to the case S2.

▶ The circle fibration near infinity then has Euler number e.



The G -signature theorem

sign[M] =
nnuts∑
i=1

ϵ(Pi )
∏
j=±

1 + gw j
i

1− gw j
i

+
4g

(1− g)2

(
e −

nbolts∑
i=1

Bi · Bi

)
+ sgn(e),

where g is an indeterminate (!).

▶ Here, ϵ(Pi ) and w±
i are invariants of the S1-action, and

Bi · Bi is the self-intersection number of the bolt Bi .

▶ Gives obstructions on the fixed point set Z, along with the
topology of M.



The G -signature theorem, an example

▶ Assume that M has exactly one nut, and any number of bolts.

▶ In the AF case, e = 0, and the G -signature theorem implies
that

nbolts∑
i=1

Bi · Bi = sign[M] = ±1.

▶ In particular, the number of bolts is nonzero.



The G -signature theorem, an example

▶ Assume that M has exactly one nut, and any number of bolts.

▶ In the ALF case, the fibration has Euler number e ̸= 0.

▶ In this case, the G -signature theorem implies that

nbolts∑
i=1

Bi · Bi = e + ϵ(P1) = e ± 1

▶ In particular, the number of bolts must be nonzero, unless
e = ±1.

▶ (The Taub–NUT instanton is ALF with e = −1, and has one
nut and no bolts.)



Concluding remarks

▶ The methods are topological in nature.

▶ Give only topological results.

▶ Can, however, be an important step in uniqueness results
involving the metric.



Thanks!
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