The Hawking–Penrose Singularity Theorem for *C*¹-Lorentzian Metrics

Michael Kunzinger, Argam Ohanyan*, Benedict Schinnerl, Roland Steinbauer

Department of Mathematics, University of Vienna

12th Central European Relativity Seminar Hungarian Academy of Sciences, Budapest, Hungary February 21st, 2022

Singularity Theorems: General Remarks

Yield existence of incomplete causal geodesics under reasonable assumpt.

Theorem (Pattern singularity theorem, [Senovilla, 98])

A spacetime has incomplete causal geodesics if it satisfies

(E) an energy (i.e. curvature) condition,

(C) a causality condition,

(I) an initial/boundary condition.

"Proof": (1) \rightarrow initially, geodesics start focusing. (E) \rightarrow they focus even more \rightarrow focal points. (C) \rightarrow no focal points. Conclusion: Not all causal geodesics can exist for all time

Conclusion: Not all causal geodesics can exist for all times.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

1

Singularity Theorems: Matters of Regularity

- Classical singularity theorems valid for C^2 -spacetimes.
- Weak point: Extensions ← regularity?
- Goal: Obstruct complete low regularity extensions
 → study singularity theorems for low reg. metrics.
- Ex.: Schwarzschild is C^0 -inextendible to $\{r = 0\}$ [Sbierski, 18].
- In many examples (e.g. matched spacetimes): metric is below C^2 .
- g ∈ C^{1,1}: Finite jumps in matter variables, bounded curvature, unique geodesics → exp-map, convex/normal neighborhoods;
 ∄ notion of conjugate/focal points.
 (Ref.: Hawking theorem [KSSV15], Penrose theorem [KSV15], Hawking–Penrose theorem [GGKS18]).

<ロ> (四) (四) (三) (三) (三) (三)

Recent new step: g ∈ C¹:
-Hawking and Penrose singularity theorems [Graf, 20],
-Gannon-Lee theorems [Schinner], Steinbauer, 21].

The Hawking–Penrose theorem for smooth spacetimes

Theorem ([Hawking, Penrose, 70])

- Let (M, g) be a smooth spacetime satisfying the following:
 - (i) (M,g) is chronological.
- (ii) $\operatorname{Ric}(X, X) \ge 0$ for causal $X \in TM$ (SEC).
- (iii) Genericity holds along each inextendible causal geodesic, i.e. $\forall \gamma \exists t: R : [\gamma'(t)] \rightarrow [\gamma'(t)], v \mapsto [R(v, \gamma'(t))\gamma'(t)]$ is not identically zero.
- (iv) There exist one of the following:
 - (a) a compact, achronal, edgeless set;
 - (b) a trapped point;
 - (c) a trapped surface;

Then (M, g) contains incomplete causal geodesics.

(iv) with trapped submfds of arb. codimension [Galloway, Senovilla, 10].

<ロ> (四) (四) (三) (三) (三) (三)

From $C^{1,1}$ to C^1

- $\bullet\,$ Geodesic eq. solvable, but not uniquely \rightarrow geodesic branching.
- ∄ exponential map, convex/normal neighborhoods.
- Geodesics are not locally maximizing.
- Levi-Civita connection Γ ~ ∂g ∈ C⁰ → curvature ~ ∂Γ ∈ D^{'(1)} (first order tensor distribution) → can insert C¹-vector fields into curvature tensors → needed for distributional genericity condition (loc. extending vector fields via parallel transport gives C¹-fields): Classically: R(., γ'(t))γ'(t) not identically zero. Distributionally: g(R(V, X)X, V) > c ∀ local C¹-fields X, V close to γ', ⊥ γ'.

Hawking–Penrose in C^1 : methods of proof

- "Analytical regularization": $g \star_M \rho_{\varepsilon} \xrightarrow{C^1} g$ (~ convolution).
- "Causal regularization": \hat{g}_{ε} , \check{g}_{ε} with

 $\check{g}_{\varepsilon} \prec g \prec \hat{g}_{\varepsilon}$ ($\prec \dots$ narrower lightcones)

and $\check{g}_{\varepsilon}, \ \hat{g}_{\varepsilon} \xrightarrow{C^1} g$ [Chrusciel, Grant, 12].

• $\hat{g}_{\varepsilon}, \check{g}_{\varepsilon}$ and $g \star_M \rho_{\varepsilon}$ are compatible: Difference $\rightarrow 0$ in C_{loc}^{∞} , difference of curvatures $\rightarrow 0$ in C_{loc}^{0} , not just in $\mathcal{D}^{'(1)}$ [Graf, 20].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

- Why both? E.g. energy conditions:
 - $\operatorname{Ric}[g] \ge 0$ in $\mathcal{D}^{'(1)} \to \operatorname{Ric}[g] \star_M \rho_{\varepsilon} \ge 0$ in \mathcal{C}^{∞}
 - $\operatorname{Ric}[g] \star_M \rho_{\varepsilon} \operatorname{Ric}[g \star_M \rho_{\varepsilon}] \to 0$ in C^0
 - $\operatorname{Ric}[g \star_M \rho_{\varepsilon}] \operatorname{Ric}[\check{g}_{\varepsilon}] \to 0 \text{ in } C^0_{loc}$
 - \Rightarrow almost energy condition for \check{g}_{ε} .

The C^1 Hawking–Penrose singularity theorem

Theorem ([Kunzinger, O., Schinnerl, Steinbauer, 21)

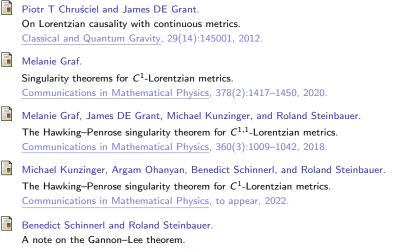
- Let (M,g) be a C^1 -spacetime satisfying the following:
- (i) (M,g) is causal.
- (ii) The distributional timelike and null energy conditions hold.
- (iii) Distributional genericity holds along each inextendible causal geodesic.
- (iv) (M,g) is maximally causally nonbranching.
- (v) There exist one of the following:
 - (a) a compact, achronal, edgeless set;
 - (b) a trapped point in the support sense;
 - (c) a trapped C^0 -surface in the support sense;
 - (d) a trapped C^0 -submanifold of codimension $2 < m < \dim M$ whose support submanifolds satisfy the distributional Galloway-Senovilla curvature condition.

Then (M, g) contains incomplete causal geodesics.

Outlook: How low can we go?

- Causally: Very low (cone structures, [Minguzzi, 19]).
- *Analytically*: Ultimate goal = Geroch-Traschen metrics. Probably worth it: *H^s*-regularity (IVP).
- Synthetically: Lorentzian length spaces [KS, 17] (singularity theorems for LLS in [GKS18], [CM20]).
- Compatibility: Causal ↔ analytic: OK. Causal ↔ synthetic: OK. Analytic ↔ synthetic: Unknown!

Selected references



イロト イボト イヨト イヨト

Letters in Mathematical Physics, 111(6):1-17, 2021.