Optimized coordinates for Ricci-flat conifolds

Áron Szabó joint work with Klaus Kröncke

Nicolaus Copernicus University in Toruń

12th Central European Relativity Seminar Budapest, Hungary 21st of February 2022

The star of the hour: Riemannian conifolds

Some history (without claim for completeness)

- gravitational instantons have been introduced in the 1970's, e.g. [EH78]
- Bartnik proved a positive mass theorem for AE manifolds [Bar86]
- Kronheimer classified four dimensional Ricci-flat ALE manifolds [Kro89]
- Bando, Kasue and Nakajima constructed coordinates at infinity [BKN89]
- several classes of examples have been constructed, even with special geometry e.g. [CH14]

Conifolds are also interesting in the study of the Ricci flow

- \bullet Hamilton introduces the Ricci flow in 1982 \leadsto conical singularities
- Nonlinear stability results for ALE manifolds based on optimized coordinates [DK20]

Goal: find a way to extend the results of [DK20].

Definition of a conifold

- A smooth manifold with ends is a manifold M such that $M = K \cup E_1 \cup \ldots \cup E_m$ where $K \subset M$ is compact and $E_j \simeq \mathbb{R} \times N_j$ as manifolds.
- Given a Riemannian manifold with ends, an end E_j is called
 - an asymptotically conical (AC) end if there is a diffeomorphism $\phi_j : E_j \to (R, \infty) \times N_j$ with

$$|\nabla^k(\phi_*g - g_{\text{cone}})| = \mathcal{O}(r^{-\tau_j - k})$$

for all $k \in \mathbb{N}$ as $r \to \infty$,

• conically singular (CS) if there is a diffeomorphism $\phi_j: E_j \to (0, R) \times N_j$ with

$$|\nabla^k(\phi_*g - g_{\text{cone}})| = \mathcal{O}(r^{+\tau_j - k})$$

for all $k \in \mathbb{N}$ as $r \to 0$, where $g_{\text{cone}} = dr \otimes dr + r^2 g_{N_j}$ is the cone metric.

• A conifold is a Riemannian manifold with ends if each of its ends is either AC or CS.

Áron Szabó

PDE technology on conifolds

The usual techniques of PDE theory, like

- Sobolev and Hölder spaces
- various embedding theorems

 L_{2}

• elliptic estimates,

can be extended to this setting by introducing weighted norms [Can75, Can79, LM85, Bar86, Pac13, Bam11].

$$\|u\|_{L^2_{\beta}} = \left(\int_M |\rho^{-\beta}u|^2 \rho^{-n} d\mu\right)^{1/2} \qquad \|u\|_{H^k_{\beta}} = \sum_{l=0}^k \left\|\nabla^l u\right\|_{L^2_{\beta-l}}$$

$$||u||_{C^{k,\alpha}_{\beta}} = \sum_{l=0}^{\kappa} \sup_{x \in M} \rho^{-\beta+l}(x) |\nabla^{l} u(x)|$$

$$+ \sup_{\substack{x,y \in M\\ 0 < d(x,y) < \operatorname{inj}(M)}} \min\left\{\rho^{-\beta+k+\alpha}(x), \rho^{-\beta+k+\alpha}(y)\right\} \frac{|\tau_x^y \nabla^k u(x) - \nabla^k u(y)|}{d(x,y)^{\alpha}},$$

Gauging

We are interested in Ricci-flat manifolds.

$$\operatorname{Ric}(g) = 0$$

Diffeomorphism-invariance \rightsquigarrow degenerate symbol \rightsquigarrow inconvenient to work with. Solution: introduce a term that "counteracts the diffeomorphism action". Fix a background metric \tilde{g} , and consider the **Ricci–DeTurck** PDE [DeT83, AM03]

 $-2\operatorname{Ric}(g) + \mathcal{L}_{V(g,\tilde{g})}g = 0,$

where $V(g, \tilde{g}) := g^{-1} \circ (\nabla^g - \nabla^{\tilde{g}}) = g^{ij} (\Gamma(g)_{ij}^{k} - \Gamma(\tilde{g})_{ij}^{k}) \partial_k$, is an elliptic quasi-linear PDE.

Definition 1 (Bianchi, or harmonic, gauge)

A metric g is in Bianchi gauge with respect to \tilde{g} if the vector field $V(g, \tilde{g})$ vanishes everywhere, except possibly on a precompact set (cf. CMCSH gauge in Zoe Wyatt's lecture).

Theorem 2 (local slice theorem, Kröncke–ÁS [KS])

The Bianchi gauge provides a good local slice for the diffeomorphism action on metrics. That is, given a background metric \tilde{g} and a precompact set U, there is a neighbourhoud of \tilde{g} in a suitable weighted Sobolev space such that any metric in this neighbourhood can be pulled back by a unique diffeomorphism (close to the identity) to a metric which is in Bianchi gauge everywhere except possibly on \overline{U} .

The linearized problem

• The linearization of the Ricci–DeTurck operator at a Ricci-flat metric on the diagonal is

$$\frac{d}{dt}\Big|_{t=0} \left(-2\operatorname{Ric}(g+th) + \mathcal{L}_{V(g+th,g)}g\right) = \nabla^{g*}\nabla^{g}h + h \circ \operatorname{Ric}^{g} - \operatorname{Ric}^{g} \circ h - 2\overset{\circ}{R^{g}}h =: \Delta_{L}^{g}(h),$$

where the last term is of order zero and depends on the curvature.

• On a cone

$$\Delta_L = -\nabla_{\partial_r} \circ \nabla_{\partial_r} - \frac{n-1}{r} \nabla_{\partial_r} + \frac{1}{r^2} \Box_L,$$

where \Box_L , the tangential operator, is an *r*-independent second-order operator containing no radial derivatives.

• The Laplace–Beltrami operator and the Hodge Laplacian have similar decompositions. Thus we obtain the tangential operators $\Box_0 = \Delta^{\text{cone}}$ and \Box_1 .

The spectrum of the tangential operator on a cone

Theorem 3 (Kröncke–ÁS [KS])

The spectrum of the tangential operator \Box_L of the Lichnerowicz Laplacian is given by

$$\sigma(\Box_L) = \sigma(\Delta_L^{link}|_{TT}) \cup \{F_{\pm}(\mu) \mid \mu \in \sigma(\Delta_1|_{D(\text{link})})\} \cup \sigma(\Delta_B^{link}) \cup \{G_{\pm}(\lambda) \mid \lambda \in \sigma(\Delta_B^{link})\} \cup \{0, 2 \dim M - 2\},$$

from transverse traceless tensors from divergence free 1-forms from functions

where F_{\pm} and G_{\pm} are concretely given elementary functions.

Simplifying assumption

For ease of presentation, we will assume from now on that the critical value $-\left(\frac{n-2}{2}\right)^2$ is not in the spectrum of the tangential operator \Box_L .

Áron Szabó

The relation between the spectrum and decay rates

For a 2-tensor $h = f(r)r^2k(x)$ in product form where $\Box k = \nu k$, then $\nabla_{\partial_r}(r^2k) = 0$ and we have $\Delta_L = -\nabla_{\partial_r} \circ \nabla_{\partial_r} - \frac{n-1}{r}\nabla_{\partial_r} + \frac{1}{r^2}\Box$

$$\Delta_L h = -f''(r)r^2k - \frac{\dim M - 1}{r}f'(r)r^2k + \frac{\nu}{r^2}fr^2k$$
$$= \left(-f''(r) - \frac{\dim M - 1}{r}f'(r) + \frac{\nu}{r^2}f\right)r^2k$$

 \rightsquigarrow the decay rate in the kernel of Δ_L is determined by the spectrum of the tangential operator \Box . The resulting ODE

$$-f''(r) - \frac{\dim M - 1}{r}f'(r) + \frac{\nu}{r^2}f = 0$$

can be solved explicitly: $f(r) = c_+ r^{\xi_+(\nu)} + c_- r^{\xi_-(\nu)}$, where $\xi_{\pm}(\nu) = -\frac{n-2}{2} \pm \sqrt{\left(\frac{n-2}{2}\right)^2} + \nu$ are the indicial roots corresponding to ν .

Decay rates

Theorem 4 (Decay in the kernel of the Lichnerowicz Laplacian, Kröncke-ÁS [KS])

Proposition 5 (Kröncke–ÁS [KS])

Let $(\overline{M},\overline{g})$ be a Ricci-flat cone and let g be a Ricci-flat metric defined on an open set $U \subset \overline{M}$ which is in Bianchi gauge with respect to \overline{g} . Then $g - \overline{g} = \mathcal{O}_{\infty}(r^{-\xi})$ as $r \to \infty$.

Idea of the proof.

$$2\operatorname{Ric}(g) = \mathcal{L}_{V(g,\overline{g})}\overline{g}$$
 on U .

Due to [Shi89, Lemma 2.1], this can be rewritten in terms to the difference $h = g - \overline{g}$ as

$$\overline{\Delta}_L h = g^{-1} * \overline{\mathrm{Rm}} * h * h + g^{-1} * g^{-1} * \overline{\nabla} h * \overline{\nabla} h + g^{-1} * \overline{\nabla}^2 h * h.$$
⁽¹⁾

Note that the RHS is quadratic in h. The rest of the proof is a standard iteration procedure in weighted function spaces.

Optimalized coordinates

Theorem 6 (Kröncke–ÁS [KS])

Let (M, g) be an asymptotically conical Ricci-flat manifold. Then there exist compact set $K \subset M$ and an asymptotic chart $\varphi : M \setminus K \to \overline{M}_{>R}$ such that $\varphi_*g - \overline{g} \in \mathcal{O}_{\infty}(r^{-\xi})$ as $r \to \infty$.

Conifolds care a lot about their ends

Even though conifolds have a relatively large number of degrees of freedom, the condition of Ricci-flatness brings so much ridigity into the picture that the spectra of operators on the link of the ends to determine much about the decay.

Thank you for your attention!

References I

- Lars Andersson and Vincent Moncrief, *Elliptic-hyperbolic systems and the Einstein equations*, vol. 4, Annales Henri Poincaré, no. 1, Springer, 2003, pp. 1–34.
- Richard Heiner Bamler, *Stability of Einstein metrics of negative curvature*, PhD thesis, Princeton University, 2011.
- Robert Bartnik, *The mass of an asymptotically flat manifold*, Communications on Pure and Applied Mathematics **39** (1986), no. 5, 661–693.
- Shigetoshi Bando, Atsushi Kasue, and Hiraku Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Inventones Mathematicae **97** (1989), no. 2, 313–349. MR 1001844
- Murray Robert Cantor, Spaces of functions with asymptotic conditions on \mathbb{R}^n , Indiana University Mathematics Journal **24** (1975), no. 9, 897–902.

References II

- Mathematica **38** (1979), no. 1, 3–35.
- Ronan J. Conlon and Hans-Joachim Hein, Asymptotically conical Calabi–Yau manifolds, iii, 2014, arXiv:1405:7140.
- Dennis M. DeTurck, *Deforming metrics in the direction of their ricci tensors*, Journal of Differential Geometry **18** (1983), no. 1, 157–162, An improved version is available at https://www2.math.upenn.edu/~deturck/papers/ricdef.pdf.
- Alix Deruelle and Klaus Kröncke, *Stability of ALE Ricci-flat manifolds under Ricci flow*, The Journal of Geometric Analysis (2020).
- **T**ohru Eguchi and Andrew J. Hanson, Asymptotically flat self-dual solutions to Euclidean gravity, Physics Letters B **74** (1978), 249–251.

References III

- P. B. Kronheimer, *The construction of ale spaces as hyper-kähler quotients*, J. Differential Geometry **29** (1989), no. 3, 665–683.
- Klaus Kröncke and Áron Szabó, *Optimal coordinates for Ricci-flat conifolds*, submitted for publication.
- Robert B. Lockhart and Robert C. McOwen, *Elliptic differential operators on noncompact manifolds*, Annali della Scuola Normale Superiore di Pisa Classe di Scienze Ser. 4, 12 (1985), no. 3, 409–447 (en). MR 837256
- Tommaso Pacini, Desingularizing isolated conical singularities: Uniform estimates via weighted Sobolev spaces, Communications in Analysis and Geometry **21** (2013), no. 1, 105–170.
- Wan-Xiong Shi, *Deforming the metric on complete Riemannian manifolds*, Journal of Differential Geometry **30** (1989), no. 1, 223–301.

Theorem 7 (Kröncke–ÁS [KS])

Let $(\overline{M}^n, \overline{g})$ be a Ricci-flat cone over a closed manifold (\widehat{M}^{n-1}, g) with $\widehat{\text{Ric}} = (n-2)\widehat{g}$. Let $0 = \lambda_0 < \lambda_1 \dots$ be the eigenvalues of the Laplace-Beltrami operator on \widehat{M} , $\mu_1 < \mu_2 < \dots$ be the eigenvalues of the connection Laplacian on divergence-free 1-forms on \widehat{M} and $\kappa_1 < \kappa_2 < \dots$ be the eigenvalues of the Einstein operator on transverse and traceless tensors on \widehat{M} .

(i) The indicial set of the Lichnerowicz Laplacian $\overline{\Delta}_L$ on \overline{M} is given by

 $\{\xi_{\pm}(\kappa_i),\xi_{\pm}(\mu_i+1)-1,\xi_{\pm}(\mu_i+1)+1,\xi_{\pm}(\lambda_i)-2,\xi_{\pm}(\lambda_i),\xi_{\pm}(\lambda_i)+2 \mid i \in \mathbb{N}\} \cup \{-n,2-n,0,2\} \in \mathbb{N}\}$

(ii) The indicial set of $\overline{\Delta}_L$ on tensors satisfying the linearized Bianchi gauge is given by

 $\{\xi_{\pm}(\kappa_i), \xi_{\pm}(\mu_i+1) - 1, \xi_{\pm}(\lambda_i) - 2, \xi_{\pm}(\lambda_i) \mid i \in \mathbb{N}\} \cup \{-n, 0\}.$

(iii) The indicial set of $\overline{\Delta}_L$ on tensors satisfying the linearized Bianchi gauge, but which are not Lie derivatives, is given by $E := \{\xi_{\pm}(\kappa_i), \xi_{\pm}(\lambda_i) | i \in \mathbb{N}\}.$

$$\xi_{\pm}(x) := -\frac{n-2}{2} \pm \sqrt{\left(\frac{n-2}{2}\right)^2 + x}$$

$$\begin{split} E_{+} &:= \operatorname{Re}(E) \cap (0, \infty) = \{\xi_{+}(\kappa_{i}), \xi_{+}(\lambda_{i}) \mid i \in \mathbb{N}, \kappa_{i} > 0\} \\ E_{-} &:= \operatorname{Re}(-E) \cap (0, \infty) \\ &= \{-\xi_{-}(\kappa_{i}), -\xi_{-}(\lambda_{i}) \mid i \in \mathbb{N}\} \cup \left\{-\xi_{+}(\kappa_{j}) \mid i \in \mathbb{N}, -\frac{(n-2)^{2}}{4} \le \kappa_{j} < 0\right\} \\ &\cup \left\{-\operatorname{Re}(\xi_{\pm}(\kappa_{j})) = \frac{n-2}{2} \mid i \in \mathbb{N}, \kappa_{j} < -\frac{(n-2)^{2}}{4}\right\}, \\ \xi_{+} &:= \min E_{+} \qquad \xi_{-} := \min E_{-}. \end{split}$$

Theorem 8

Kröncke-ÁS [KS] Let (Mⁿ, g) be a Ricci-flat conifold with ends M_i, i = 1,..., N, which are modeled by Ricci-flat cones over Einstein manifolds (M_i, ĝ_i). Then the following assertions hold:
(i) If M_i, i ∈ {1,...,N}, is an asymptotically conical end, then it is of order ξ₋(M_i, ĝ_i) if it is not resonance-dominated and weakly of order n-2/2 otherwise.

(ii) If M_i , $i \in \{1, \ldots, N\}$, is a conically singular end, then it is of order $\xi_+(\widehat{M}_i, \widehat{g}_i)$.

Áron Szabó