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The star of the hour: Riemannian conifolds

small (CS) ends

large (AC) end

link or cross sectionasymptotic cone

asymptotic cone

compact core
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Some history (without claim for completeness)

gravitational instantons have been introduced in the 1970’s, e.g. [EH78]
Bartnik proved a positive mass theorem for AE manifolds [Bar86]
Kronheimer classified four dimensional Ricci-flat ALE manifolds [Kro89]
Bando, Kasue and Nakajima constructed coordinates at infinity [BKN89]
several classes of examples have been constructed, even with special geometry e.g. [CH14]

Conifolds are also interesting in the study of the Ricci flow
Hamilton introduces the Ricci flow in 1982  conical singularities
Nonlinear stability results for ALE manifolds based on optimized coordinates [DK20]

Goal: find a way to extend the results of [DK20].

Áron Szabó Optimized coordinates for Ricci-flat conifolds page 3



Definition of a conifold
A smooth manifold with ends is a manifold M such that M = K ∪ E1 ∪ . . . ∪ Em where
K ⊂M is compact and Ej ' R×Nj as manifolds.
Given a Riemannian manifold with ends, an end Ej is called

an asymptotically conical (AC) end if there is
a diffeomorphism φj : Ej → (R,∞)×Nj with

|∇k(φ∗g − gcone)| = O(r−τj−k)

for all k ∈ N as r →∞,
conically singular (CS) if there is a
diffeomorphism φj : Ej → (0, R)×Nj with

|∇k(φ∗g − gcone)| = O(r+τj−k)

for all k ∈ N as r → 0,

small (CS) ends

large (AC) end

link or cross sectionasymptotic cone

asymptotic cone

compact core

where gcone = dr ⊗ dr + r2gNj is the cone metric.
A conifold is a Riemannian manifold with ends if each of its ends is either AC or CS.
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PDE technology on conifolds
The usual techniques of PDE theory, like

Sobolev and Hölder spaces
various embedding theorems
elliptic estimates,

can be extended to this setting by introducing weighted norms
[Can75, Can79, LM85, Bar86, Pac13, Bam11].
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Gauging

We are interested in Ricci-flat manifolds.

Ric(g) = 0

Diffeomorphism-invariance  degenerate symbol  inconvenient to work with.
Solution: introduce a term that “counteracts the diffeomorphism action”.
Fix a background metric g̃, and consider the Ricci–DeTurck PDE [DeT83, AM03]

−2 Ric(g) + LV (g,g̃)g = 0,

where V (g, g̃) := g−1 ◦ (∇g −∇g̃) = gij(Γ(g)ij
k − Γ(g̃)ij

k)∂k, is an elliptic quasi-linear PDE.

Definition 1 (Bianchi, or harmonic, gauge)
A metric g is in Bianchi gauge with respect to g̃ if the vector field V (g, g̃) vanishes everywhere,
except possibly on a precompact set (cf. CMCSH gauge in Zoe Wyatt’s lecture).
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Theorem 2 (local slice theorem, Kröncke–ÁS [KS])
The Bianchi gauge provides a good local slice for the diffeomorphism action on metrics.
That is, given a background metric g̃ and a precompact set U , there is a neighbourhoud of g̃ in a
suitable weighted Sobolev space such that any metric in this neighbourhood can be pulled back by a
unique diffeomorphism (close to the identity) to a metric which is in Bianchi gauge everywhere
except possibly on U .
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The linearized problem

The linearization of the Ricci–DeTurck operator at a Ricci-flat metric on the diagonal is

d

dt

∣∣∣∣
t=0

(−2 Ric(g + th) + LV (g+th,g)g) = ∇g∗∇gh+h ◦ Ricg −Ricg ◦h− 2
◦
Rgh =: ∆g

L(h),

where the last term is of order zero and depends on the curvature.
On a cone

∆L = −∇∂r ◦ ∇∂r −
n− 1
r
∇∂r + 1

r2�L,

where �L, the tangential operator, is an r-independent second-order operator containing no
radial derivatives.
The Laplace–Beltrami operator and the Hodge Laplacian have similar decompositions. Thus
we obtain the tangential operators �0 = ∆cone and �1.
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The spectrum of the tangential operator on a cone

Theorem 3 (Kröncke–ÁS [KS])
The spectrum of the tangential operator �L of the Lichnerowicz Laplacian is given by

σ(�L) = σ(∆link
L |TT ) from transverse traceless tensors

∪
{
F±(µ)

∣∣µ ∈ σ(∆1|D(link))
}

from divergence free 1-forms
∪ σ(∆link

B ) ∪
{
G±(λ)

∣∣λ ∈ σ(∆link
B )

}
from functions

∪ {0, 2 dimM − 2} ,

where F± and G± are concretely given elementary functions.

Simplifying assumption
For ease of presentation, we will assume from now on that the critical value −

(
n−2

2
)2 is not in the

spectrum of the tangential operator �L.
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The relation between the spectrum and decay rates

For a 2-tensor h = f(r)r2k(x) in product form where �k = νk, then ∇∂r (r2k) = 0 and we have
∆L = −∇∂r ◦ ∇∂r − n−1

r ∇∂r + 1
r2�

∆Lh = −f ′′(r)r2k − dimM − 1
r

f ′(r)r2k + ν

r2 fr
2k

=
(
−f ′′(r)− dimM − 1

r
f ′(r) + ν

r2 f

)
r2k

 the decay rate in the kernel of ∆L is determined by the spectrum of the tangential operator �.
The resulting ODE

−f ′′(r)− dimM − 1
r

f ′(r) + ν

r2 f = 0

can be solved explicitly: f(r) = c+r
ξ+(ν) + c−r

ξ−(ν), where ξ±(ν) = −n−2
2 ±

√(
n−2

2
)2 + ν are the

indicial roots corresponding to ν.
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Decay rates

Theorem 4 (Decay in the kernel of the Lichnerowicz Laplacian, Kröncke–ÁS [KS])

A tensor field h which decays at
infinity and which satisfies
∆cone
L h = 0 has h = O

(
r−ξ
)
where

ξ := min { − <ξ±(ν) |ν ∈ σ(�L)}∩
(0,∞).

ξ±(ν) = −n−2
2 ±

√(
n−2

4
)2 + ν

critical point
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Proposition 5 (Kröncke–ÁS [KS])
Let (M, g) be a Ricci-flat cone and let g be a Ricci-flat metric defined on an open set U ⊂M which
is in Bianchi gauge with respect to g. Then g − g = O∞(r−ξ) as r →∞.

Idea of the proof.

2 Ric(g) = LV (g,g)g on U.

Due to [Shi89, Lemma 2.1], this can be rewritten in terms to the difference h = g − g as

∆Lh = g−1 ∗ Rm ∗ h ∗ h+ g−1 ∗ g−1 ∗ ∇h ∗ ∇h+ g−1 ∗ ∇2
h ∗ h. (1)

Note that the RHS is quadratic in h. The rest of the proof is a standard iteration procedure in
weighted function spaces.
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Optimalized coordinates

Theorem 6 (Kröncke–ÁS [KS])
Let (M, g) be an asymptotically conical Ricci-flat manifold. Then there exist compact set K ⊂M
and an asymptotic chart ϕ : M \K →M>R such that ϕ∗g − g ∈ O∞(r−ξ) as r →∞.
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Take-home message

Conifolds care a lot about their ends
Even though conifolds have a relatively large number of degrees of freedom, the condition of
Ricci-flatness brings so much ridigity into the picture that the spectra of operators on the link of
the ends to determine much about the decay.

Thank you for your attention!
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Theorem 7 (Kröncke–ÁS [KS])

Let (Mn
, g) be a Ricci-flat cone over a closed manifold (M̂n−1, g) with R̂ic = (n− 2)ĝ.

Let 0 = λ0 < λ1 . . . be the eigenvalues of the Laplace–Beltrami operator on M̂ , µ1 < µ2 < . . . be the
eigenvalues of the connection Laplacian on divergence-free 1-forms on M̂ and κ1 < κ2 < . . . be the
eigenvalues of the Einstein operator on transverse and traceless tensors on M̂ .
(i) The indicial set of the Lichnerowicz Laplacian ∆L on M is given by

{ξ±(κi), ξ±(µi + 1)− 1, ξ±(µi + 1) + 1, ξ±(λi)− 2, ξ±(λi), ξ±(λi) + 2 |i ∈ N} ∪ {−n, 2− n, 0, 2} .

(ii) The indicial set of ∆L on tensors satisfying the linearized Bianchi gauge is given by

{ξ±(κi), ξ±(µi + 1)− 1, ξ±(λi)− 2, ξ±(λi) |i ∈ N} ∪ {−n, 0} .

(iii) The indicial set of ∆L on tensors satisfying the linearized Bianchi gauge, but which are not Lie
derivatives, is given by E := {ξ±(κi), ξ±(λi) |i ∈ N}.

ξ±(x) := −n−2
2 ±

√(
n−2

2
)2 + x.
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E+ : = Re(E) ∩ (0,∞) = {ξ+(κi), ξ+(λi) |i ∈ N, κi > 0}
E− : = Re(−E) ∩ (0,∞)

= { − ξ−(κi),−ξ−(λi) |i ∈ N} ∪
{
− ξ+(κj)

∣∣∣∣i ∈ N,− (n− 2)2

4 ≤ κj < 0
}

∪
{
− Re(ξ±(κj)) = n− 2

2

∣∣∣∣i ∈ N, κj < −
(n− 2)2

4

}
,

ξ+ : = minE+ ξ− := minE−.

Theorem 8
Kröncke–ÁS [KS] Let (Mn, g) be a Ricci-flat conifold with ends Mi, i = 1, . . . , N , which are
modeled by Ricci-flat cones over Einstein manifolds (M̂i, ĝi). Then the following assertions hold:
(i) If Mi, i ∈ {1, . . . , N}, is an asymptotically conical end, then it is of order ξ−(M̂i, ĝi) if it is

not resonance-dominated and weakly of order n−2
2 otherwise.

(ii) If Mi, i ∈ {1, . . . , N}, is a conically singular end, then it is of order ξ+(M̂i, ĝi).
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